北师大版九年级数学上册第三章3.2用频率估计概率 同步测试
一.选择题
1.下列说法正确的是( )
A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球
B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨
C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1
000张,一定会中奖
D.连续掷一枚均匀硬币,若5次都是正面朝上,则第6次仍然可能正面朝上
2.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后,任意摸出一个球记下颜色再放回纸箱中,通过大量的重复摸球实验后发现,摸到红球的频率稳定在,因此可以推算出m的值大约是(
)
A.8
B.12
C.16
D.20
3.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为(
)
A.
B.
C.
D.
4.做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为( )A.22%
B.44%
C.50%
D.56%
5.在一个不透明的口袋中放着红色、黑色、黄色的橡皮球共有30个,它们除颜色外其它全相同.小刚通过多次摸球试验后发现从中摸到红色球、黄色球的频率稳定在0.15和0.45之间,则口袋中黑色球的个数可能是(
)
A.14
B.20
C.9
D.6
把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是(
)
A.
B.
C.
D.
下列说法中正确的个数是( )
①不可能事件发生的概率为0;
②一个对象在试验中出现的次数越多,频率就越大;
③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;
④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.
A.1
B.2
C.3
D.4
8.在做“抛掷两枚硬币实验”时,有部分同学没有硬币,因而需要用别的实物来替代进行实验,在以下所选的替代物中,你认为较合适的是(
)
A.两张扑克牌,一张是红桃,另一张是黑桃
B.两个乒乓球,一个是黄色,另一个是白色
C.两个相同的矿泉水瓶盖
D.四张扑克牌,两张是红桃,另两张是黑桃
9.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(
)
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在25%左右,则口袋中红色球可能有(
)
A.5个
B.10个
C.15个
D.45个
二.填空题
“抛出的蓝球会下落”,这个事件是
事件.(填“确定”或“不确定”)
12.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是
,对某次投篮而言,二人同时投中的概率是
.
13.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.14.在一次摸球实验中,一个袋子中有黑色和红色和白色三种颜色除外,其他都相同.若从中任意摸出一球,记下颜色后再放回去,再摸,若重复这样的实验400次,98次摸出了黄球,则我们可以估计从口袋中随机摸出一球它为黄球的概率是
.
15.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是
.
16.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:
2012届
2013届
2014届
2015届
2016届
参与人数
106
110
98
104
112
B
54
57
49
51
56
频率
0.509
0.518
0.500
0.490
0.500
若曾老师所在学校有2
000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.
17.在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,则口袋中可能有黄球_____个.
18.一水塘里有鲤鱼、鲫鱼、鲢鱼共10?000尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,则这个水塘里大约有鲢鱼_____尾.
解答题
19.一直不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的实验,得到取出红球的频率是,求:
(1)取出白球的概率是多少?
(2)如果袋中的白球有18只,那么袋中的红球有多少只?
20.小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.
(1)若小明恰好抽到黑桃4.
①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.
(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由.
21.某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.
(1)计算并完成表格;
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该盘一次,你获得洗衣粉的概率约是多少?
(4)在该转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少?(精确到1°)
22.有一个“摆地摊”的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的机会,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?
23.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:
朝上的点数
1
2
3
4
5
6
出现的次数
7
9
6
8
20
10
(1)分别计算“3点朝上”的频率和“5点朝上”的频率;
(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?
24.学校门口经常有小贩搞摸奖活动,某小贩在一只黑色的口袋里装有颜色不同的50只小球,其中红色1只,黄色2只,绿色10只,其余为白球,搅拌均匀后,每2元摸1球,奖品的情况标注在球上(如图):
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
答案提示
1.D
2.C
3.D
4.B
5.B.
6.B
7.C
8.D
9.D.10.C.
11.确定
12.甲,
13.
20
14.
15.
16.
1000
17.40.
18.2700
19.解答:(1)取出白球与取出红球为对立事件,概率之和为1.
故P(取出白球)=1-P(取出红球)
(2)设袋中的红球有x只,则有,
,
解得x=6.
所以袋中的红球有6只.
20.(1)①图略,②;(2)这个游戏公平
解:(1)0.68
0.74
0.68
0.69
0.705
0.701;
(2)0.7;(3)0.7;(4)
22.400元
解:(1)“3点朝上”出现的频率是=,
“5点朝上”出现的频率是=.
(2)小颖的说法是错误的.这是因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当试验的次数足够多时,该事件发生的频率才会稳定在事件发生的概率附近.小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次.
24.解:(1)根据题意可得:共50只球,
∵白球的个数为50-1-2-10=37,
∴摸不到奖的概率是:;
(2)获得10元的奖品只有一种可能即同时摸出两个黄球,
∵当摸出一个黄球后,还剩一个,得到黄球的概率为,
∴获得10元奖品的概率是:.