25.2 用列举法求概率(中考真题专练)

文档属性

名称 25.2 用列举法求概率(中考真题专练)
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-10-20 13:24:23

文档简介

中小学教育资源及组卷应用平台
第25章概率初步25.2用列举法求概率(中考真题专练)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2019·广西防城港·中考真题)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是(  )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
画树状图(用、、分别表示“图书馆、博物馆、科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.
【详解】
画树状图为:(用分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率.
故选A.
【点评】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.
2.(2017·山东泰安·)袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为(

A.
B.
C.
D.
【答案】B
【解析】
【分析】
通过画树状图可求出概率.
【详解】
画树状图为:
共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=.
故选B.
考点:列表法与树状图法
3.(2013·山东泰安·中考真题)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为(

A.
B.
C.
D.
【答案】B
【解析】
【分析】
【详解】
试题分析:根据题意,画出树状图如下:
一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.
考点:列表法与树状图法求概率.
4.(2018·河南中考真题)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是(  )
A.
B.
C.
D.
【答案】D
【解析】
分析:直接利用树状图法列举出所有可能进而求出概率.
详解:令3张用A1,A2,A3,表示,用B表示,
画树状图为:

一共有12种可能的情况,其中两张卡片正面图案相同的有6种情况,
故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.
故选D.
点评:此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.
5.(2018·广西梧州·中考真题)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个
不透明的箱子中装有红、黄、白三种球各
1
个,这些球除颜色外无其他差别,从箱子中随机摸出
1
个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(

A.
B.
C.
D.
【答案】D
【解析】
【分析】
画出树状图,得到所有可能的情况,然后找出符合条件的情况数,然后利用概率公式计算即可.
【详解】
画树状图如下,
一共有
27
种可能,三人摸到球的颜色都不相同有
6
种可能,
∴P(三人摸到球的颜色都不相同)==,
故选D.
【点评】
本题考查了列表法或树状图求概率,,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2018·广西柳州·中考真题)现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为  
A.1
B.
C.
D.
【答案】B
【解析】
【分析】
利用概率公式计算即可得.
【详解】
∵从4张纸牌中任意取一张有4种等可能的结果,其中抽到红桃A的只有1种结果,
∴抽到红桃A的概率为
故选:B.
【点评】
本题考查的知识点是概率公式,解题关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数+所有可能出现的结果数.
二、填空题
7.(2017·四川达州·中考真题)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是

【答案】.
【解析】
试题分析:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.
考点:反比例函数图象上点的坐标特征;列表法与树状图法.
8.(2019·新疆中考真题)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________
【答案】
【解析】
【分析】
画树状图展示所有36种等可能的结果数,再找出“两枚骰子点数之和小于5”的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,
∴两枚骰子点数之和小于5的概率是

故答案为.
【点评】
此题考查列表法与树状图法求概率,解题关键在于画出树状图.
9.(2019·河南中考真题)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.
【答案】
【解析】
【分析】
列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.
【详解】
解:列表如下:




(黄,红)
(红,红)
(红,红)

(黄,红)
(红,红)
(红,红)

(黄,白)
(红,白)
(红,白)
由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,
所以摸出的两个球颜色相同的概率为,
故答案为:.
【点评】
本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.
10.(2016·湖南娄底·中考真题)从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
【答案】.
【解析】
【分析】
【详解】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点评】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
11.(2018·四川广元·中考真题)已知一次函数,其中从1,-2中随机取一个值,从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为__________
【答案】
【解析】
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该一次函数的图象经过一、二、三象限的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有6种等可能的结果,一次函数的图象经过一、二、三象限的有(1,2),(1,3),
∴一次函数的图象经过一、二、三象限的概率为:,
故答案为.
【点评】
本题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.本题用到的知识点为:概率=所求情况数与总情况数之比.
12.(2018·湖北咸宁·中考真题)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.
【答案】
【解析】
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.
【详解】
根据题意,画树状图如下:
共有9种等可能结果,其中两次摸出的小球标号相同的有3种结果,
所以两次摸出的小球标号相同的概率是,
故答案为.
【点评】
此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
错因分析
中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.
三、解答题
13.(2019·广西百色·中考真题)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号





人数
15
20
10
已知前面两个小组的人数之比是.
解答下列问题:
(1) 

(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
【答案】(1)5;(2)补全条形统计图见解析;(3)这两名同学是同一组的概率为.
【解析】
【分析】
(1)用全班人数减去二、三、四组的人数即可得;
(2)根据第三组数据补全条形图即可;
(3)先求出a、b的值,然后画树状图得到所有等可能的情况数,找出符合条件的情况数,利用概率公式求解即可.
【详解】
(1)由题意知,
故答案为5;
(2)补全图形如下:
(3)∵a:15=1:5,
∴,
∴=2,
即第一组有3名同学,第五组有2名同学,
设第一组3位同学分别为,设第五组2位同学分别为,
由上图可知,一共有20种等可能的结果,其中两名同学是同一组的有8种,所求概率是:.
【点评】
本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.
14.(2019·贵州遵义·中考真题)电子政务、数字经济、智慧社会一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表
组别
成绩x(分)
人数
A
60≤x<70
10
B
70≤x<80
m
C
80≤x<90
16
D
90≤x≤100
4
请观察上面的图表,解答下列问题:
(1)统计表中m= 
 ;统计图中n= 
 ,D组的圆心角是 
 度.
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
①恰好1名男生和1名女生被抽取参加5G体验活动的概率;
②至少1名女生被抽取参加5G体验活动的概率.
【答案】(1)20、32、28.8;(2)①恰好1名男生和1名女生被抽取参加5G体验活动的概率为;②至少1名女生被抽取参加5G体验活动的概率为.
【解析】
【分析】
(1)先根据A组人数及其所占百分比求出总人数,由各组人数之和等于总人数求出B组人数m的值,用360°乘以D组人数所占比例可得;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
【详解】
(1)被调查的总人数为10÷20%=50,
则m=50﹣(10+16+4)=20,
n%100%=32%,即n=32,
D组的圆心角是360°28.8°,
故答案为20、32、28.8;
(2)①设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:
A
B
1
2
A
/
(B,A)
(1,A)
(2,A)
B
(A,B)
/
(1,B)
(2,B)
1
(A,1)
(B,1)
/
(2,1)
2
(A,2)
(B,2)
(1,2)
/
共有
12
种可能的结果,且每种的可能性相同,其中刚好抽到一男一女的结果有8种,
∴恰好1名男生和1名女生被抽取参加5G体验活动的概率为;
②∵至少1名女生被抽取参加5G体验活动的有10种结果,
∴至少1名女生被抽取参加5G体验活动的概率为.
【点评】
本题考查了频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.
15.(2019·辽宁朝阳·中考真题)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.
(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.
(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.
【答案】(1);(2)两次所抽取的卡片恰好都是轴对称图形的概率为.
【解析】
【分析】
(1)先判断其中的中心对称图形,再根据概率公式求解即得答案;
(2)先画出树状图得到所有可能的情况,再判断两次都是轴对称图形的情况,然后根据概率公式计算即可.
【详解】
解:(1)中心对称图形的卡片是A和D,所以从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为;
(2)轴对称图形的卡片是B、C、E.
画树状图如下:
由树状图知,共有20种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,分别是(B,C)、(B,E)、(C,B)、(C,E)、(E,B)、(E,C),
∴两次所抽取的卡片恰好都是轴对称图形的概率=.
【点评】
本题考查了用画树状图或列表法求两次事件的概率、中心对称图形和轴对称图形的定义等知识,熟知中心对称图形和轴对称图形的定义以及用画树状图或列表法求概率的方法是解题的关键.
16.(2019·吉林长春·中考真题)一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.
【答案】.
【解析】
【分析】
画出树状图,共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,由概率公式即可得出结果.
【详解】
解:画树状图如图:
共有9个等可能的结果,小新同学两次摸出小球上的汉字相同的结果有5个,
∴小新同学两次摸出小球上的汉字相同的概率为.
【点评】
考核知识点:求概率.画树状图是关键.
17.(2019·云南中考真题)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
【答案】(1)见解析;(2)这个游戏对双方公平,理由见解析.
【解析】
【分析】
(1)通过列表法即可得(x,y)所有可能出现的结果数;
(2)根据(1)的结果,分别找出x+y为奇数、x+y为偶数的结果数,利用概率公式分别求解后进行比较即可.
【详解】
(1)列表如下:
1
2
3
4
1
(1,1)
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,2)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
(3,4)
4
(4,1)
(4,2)
(4,3)
(4,4)
由表格可知(x,y)所有可能出现的结果共有16种;
(2)这个游戏对双方公平,理由如下:
由列表法可知,在16种可能出现的结果中,它们出现的可能性相等,
∵x+y为奇数的有8种情况,∴P(甲获胜)=,
∵x+y为偶数的有8种情况,∴P(乙获胜)=

∴P(甲获胜)=P(乙获胜),
∴这个游戏对双方公平.
【点评】
本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
18.(2019·四川广元·中考真题)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称
白开水
瓶装矿泉水
碳酸饮料
非碳酸饮料
平均价格(元/瓶)
0
2
3
4
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.
【答案】(1)这个班级的学生人数为50人,补全图形见解析;(2)该班同学每天用于饮品的人均花费是2.2元;(3)恰好抽到2名班长的概率为.
【解析】
【分析】
(1)由B饮品的人数及其所占百分比可得总人数,再根据各饮品的人数之和等于总人数求出C的人数即可补全图形;
(2)根据加权平均数的定义计算可得;
(3)画树状图得出所有等可能结果,从中找到符合条件的结果,再根据概率公式计算可得.
【详解】
(1)这个班级的学生人数为(人),
选择C饮品的人数为(人),
补全图形如下:
(2)(元),
答:该班同学每天用于饮品的人均花费是2.2元;
(3)画树状图如下:
由树状图知共有20种等可能结果,其中恰好抽到2名班长的有2种结果,
所以恰好抽到2名班长的概率为.
【点评】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第25章概率初步25.2用列举法求概率(中考真题专练)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2019·广西防城港·中考真题)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是(  )
A.
B.
C.
D.
2.(2017·山东泰安·)袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为(

A.
B.
C.
D.
3.(2013·山东泰安·中考真题)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为(

A.
B.
C.
D.
4.(2018·河南中考真题)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是(  )
A.
B.
C.
D.
5.(2018·广西梧州·中考真题)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个
不透明的箱子中装有红、黄、白三种球各
1
个,这些球除颜色外无其他差别,从箱子中随机摸出
1
个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(

A.
B.
C.
D.
6.(2018·广西柳州·中考真题)现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为  
A.1
B.
C.
D.
二、填空题
7.(2017·四川达州·中考真题)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是

8.(2019·新疆中考真题)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________
9.(2019·河南中考真题)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.
10.(2016·湖南娄底·中考真题)从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
11.(2018·四川广元·中考真题)已知一次函数,其中从1,-2中随机取一个值,从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为__________
12.(2018·湖北咸宁·中考真题)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.
三、解答题
13.(2019·广西百色·中考真题)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号





人数
15
20
10
已知前面两个小组的人数之比是.
解答下列问题:
(1) 

(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
14.(2019·贵州遵义·中考真题)电子政务、数字经济、智慧社会一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表
组别
成绩x(分)
人数
A
60≤x<70
10
B
70≤x<80
m
C
80≤x<90
16
D
90≤x≤100
4
请观察上面的图表,解答下列问题:
(1)统计表中m= 
 ;统计图中n= 
 ,D组的圆心角是 
 度.
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
①恰好1名男生和1名女生被抽取参加5G体验活动的概率;
②至少1名女生被抽取参加5G体验活动的概率.
15.(2019·辽宁朝阳·中考真题)有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.
(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为_____.
(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.
16.(2019·吉林长春·中考真题)一个不透明的口袋中有三个小球,每个小球上只标有一个汉字,分别是“家”、“家”“乐”,除汉字外其余均相同.小新同学从口袋中随机摸出一个小球,记下汉字后放回并搅匀;再从口袋中随机摸出一个小球记下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相同的概率.
17.(2019·云南中考真题)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
18.(2019·四川广元·中考真题)如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称
白开水
瓶装矿泉水
碳酸饮料
非碳酸饮料
平均价格(元/瓶)
0
2
3
4
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)