中小学教育资源及组卷应用平台
第二十五章 概率初步
25.2 用列举法求概率练习
一、单选题(共10小题)
1.(2020·宿州市期末)学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )
A. B. C. D.
2.(2019·成都市期末)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
A. B. C. D.
3.(2020·徐州市期中)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )
A. B. C. D.
4.(2019·哈尔滨市期末)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
5.(2020·景县期中)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
6.(2020·南阳市期末)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )
A. B. C. D.
7.(2018·招远市期末)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
8.(2019·北京市期末)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )
A. B. C. D.
9.(2019·牡丹区期末)一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为( )
A. B. C. D.
10.(2018·七台河市期末)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A. B. C. D.
二、填空题(共5小题)
11.(2020中山市期末)我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是____.
12.(2020·洛阳市期末)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.
13.(2019·金水区期中)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是 .
14.(2019·南昌市期中)已知一次函数,其中从1,-2中随机取一个值,从-1,2,3中随机取一个值,则该一次函数的图象经过一,二,三象限的概率为__________
15.(2020·眉山市期末)一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
三、解答题(共2小题)
16.(2019·长沙市期中)我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:
(1)本次一共调查了_________名学生;
(2)请将条形统计图补充完整;
(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
17.(2020·昆明市期末)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.
答案
一、单选题(共10小题)
1.C2.B3.B.4.A5.C6.A7.C8.D9.A10.B
二、填空题(共5小题)
11.【答案】.【详解】根据题意画树形图:
共有6种等情况数,其中“A口进E口出”有一种情况,
从“A口进E口出”的概率为;
故答案为:.
12.(【答案】【详解】解:列表如下:
黄 红 红
红 (黄,红) (红,红) (红,红)
红 (黄,红) (红,红) (红,红)
白 (黄,白) (红,白) (红,白)
由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,
所以摸出的两个球颜色相同的概率为,
故答案为:.
13.【答案】.【解析】试题分析:画树状图得:
∵共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数图象上的概率是:=.故答案为.
14.【答案】【详解】画树状图得:
∵共有6种等可能的结果,一次函数的图象经过一、二、三象限的有(1,2),(1,3),
∴一次函数的图象经过一、二、三象限的概率为:,
故答案为.
15.【答案】 【解析】
详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是.
故答案为:.
三、解答题(共2小题)
16.【答案】(1)50;(2)见解析;(3).【详解】
(1)本次一共调查:15÷30%=50(人);故答案为50;
(2)B对应的人数为:50﹣16﹣15﹣7=12,
如图所示:
(3)列表:
A B C D
A
AB AC AD
B BA
BC BD
C CA CB
CD
D DA DB DC
∵共有12种等可能的结果,恰好选中A、B的有2种,
∴P(选中A、B)==.
17.【答案】(1);(2) 【详解】(1);
(2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:
弟弟 姐姐 A B C D
A
(A,B) (A,C) (A,D)
B (B,A)
(B,C) (B,D)
C (C,A) (C,B)
(C,D)
D (D,A) (D,B) (D,C)
由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
_21?????????è?????(www.21cnjy.com)_