5.3
应用一元一次方程——水箱变高了
一.选择题
1.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完,设原有树苗x棵,则根据题意列出方程正确的是( )
A.5(x+21﹣1)=6(x﹣1)
B.5(x+21)=6(x﹣1)
C.5(x+21﹣1)=6x
D.5(x+21)=6x
2.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个.设计划做x个“中国结”,可列方程( )
A.=
B.=
C.=
D.=
3.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程( )
A.98+x=x﹣3
B.98﹣x=x﹣3
C.(98﹣x)+3=x
D.(98﹣x)+3=x﹣3
4.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是( )
A.3x+1=4x﹣2
B.3x﹣1=4x+2
C.
D.
5.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x天,则所列方程为( )
A.+
B.+
C.+
D.++
6.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x张铝片制作瓶身,则可列方程( )
A.16x=45(100﹣x)
B.16x=45(50﹣x)
C.2×16x=45(100﹣x)
D.16x=2×45(100﹣x)
7.阳光中学七(2)班篮球队参加比赛,胜一场得2分,负一场得1分,该队共赛了12场,共得20分,该队胜了多少场?解:设该队胜了x场,依题意得,下列方程正确的是( )
A.2(12﹣x)+x=20
B.2(12+x)+x=20
C.2x+(12﹣x)=20
D.2x+(12+x)=20
8.周末小明一家去爬山,上山时每小时走3km,下山时按原路返回,每小时走5km,结果上山时比下山多花h,设下山所用时间为xh,可得方程( )
A.5(x﹣)=3x
B.5(x+)=3x
C.5x=3(x﹣)
D.5x=3(x+)
9.某工程,甲单独做12天完成,乙单独做8天完成.现在由甲先做3天,乙再参加做,求完成这项工程乙还需要几天?若设完成这项工程乙还需要x天,则下列方程不正确的是( )
A.
B.
C.
D.
10.下表是某服装店的原价表,国庆期间该店优惠大酬宾,外套按原价打六折出售,衬衫和裤子按原价打八折出售,已知这三种服饰共卖出200件,共得33860元.设外套卖出x件,由题意可得方程( )
服饰
原价(元)
外套
299
衬衫
199
裤子
199
A.0.8×199x+0.6×299(200+x)=33860
B.0.8×199x+0.6×299(200﹣x)=33860
C.0.6×299x+0.8×199(200+x)=33860
D.0.6×299x+08×199(200﹣x)=33860
二.填空题
11.一艘轮船从甲码头到乙码头顺流行驶用3小时,从乙码头到甲码头逆流行驶用4小时,已知轮船在静水中的速度为30千米/时,求水流的速度,若设水流的速度为x千米/时,则可列一元一次方程为
.
12.“春节”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,设该电器的成本为x元,请列出相应的方程
.
13.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为
.
14.一件商品按成本价九折销售,售价为270元.这件商品的成本价是多少?设这件商品的成本价为x元,则可以列出方程
.
15.某日历上任意圈出有一竖列上相邻的3个数之和为69,求这几天分别是几号,若设中间数是x,可列方程为
.
三.解答题
16.重温例题:
小丽在水果店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元.小丽买了苹果和橘子各多少千克?
解决问题:
(1)设所购买的苹果质量为xkg.请你将下列同学的探究过程补充完整.
①小明同学列出了下表,并根据相等关系“买苹果的金额+买橘子的金额=18元”,可得方程:
.
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
3.2x
橘子
2.6
6﹣x
2.6(6﹣x)
合计
6
18
②小红、小王、小颖三位同学分别给出了不同于小明同学的表格和方程,请补充完整.
(友情提醒:表格中的空格表达式不同于小明所填的,所列方程不要化简.)
i小红根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程
.
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
3.2x
橘子
2.6
18﹣3.2x
合计
6
18
ii小王根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程
.
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
橘子
2.6
6﹣x
2.6(6﹣x)
合计
6
18
iii小颖根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程
.
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
3.2x
橘子
2.6
6﹣x
合计
6
18
(2)设苹果购买金额为y元,下列方程正确的是
.(填写正确的序号)
①;②y+2.6(6﹣)=18;③3.2(6﹣)=y;④3.2(6﹣)=18﹣y.
17.甲车从A地出发,匀速开往B地,到达B地后,立刻沿原路以原速返回A地,乙车在甲车出发15min后,从A地出发,匀速开往B地,已知甲车每小时行驶120km,乙车的速度是甲车速度的一半,设甲车途中行驶的时间为xh(x>).
(1)根据题意,填写下列表格:
行驶速度(km/h)
行驶时间(h)
行驶路程(km)
甲车
120
x
乙车
(2)已知A、B两地相距akm(a>30).
①当甲车到达B地时,求乙车与B地的距离(用含a表示代数式表示,结果需简化).
②当两车相遇时,用方程描述甲、乙两车行驶路程之间的相等关系.
③当x=
时,甲车到达A地,当x=
时,乙车到达B地(用含a的代数式表示,结果需简化),
先到达(填甲或乙).
18.一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少钱?设衬衫的成本为x元.
(1)填写下表:(用含有x的代数式表示)
成本
标价
售价
x
(2)根据相等关系列出方程:
.
参考答案
一.选择题
1.
A.
2.
A.
3.
D.
4.
C.
5.
C.
6.
C.
7.
C.
8.
D.
9.
C.
10.
D.
二.填空题
11.
3(x+30)=4(30﹣x).
12.(1+30%)×80%x=2080.
13.
45x+16=50x﹣9.
14.
0.9x=270.
15.(x﹣7)+x+(x+7)=69.
三.解答题(共3小题)
16.解:(1)①设小丽买了x千克的苹果,则她买橘子(6﹣x)千克.
由题意得:3.2x+2.6(6﹣x)=18;
故答案为:3.2x+2.6(6﹣x)=18;
②i补全表格如下:
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
3.2x
橘子
2.6
18﹣3.2x
合计
6
18
根据相等关系“所买苹果的质量+橘子的质量=6kg”,得方程:x+=6,
故答案为:x+=6;
ii补全表格如下:
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
18﹣2.6(6﹣x)
橘子
2.6
6﹣x
2.6(6﹣x)
合计
6
18
根据相等关系“苹果的单价×其质量=苹果购买金额”,得方程:3.2x=18﹣2.6(6﹣x),
故答案为:3.2x=18﹣2.6(6﹣x).
iii补全表格如下:
单价(元/kg)
质量(kg)
金额(元)
苹果
3.2
x
3.2x
橘子
2.6
6﹣x
18﹣3.2x
合计
6
18
根据相等关系“橘子的单价×其质量=橘子购买金额”,得方程:2.6(6﹣x)=18﹣3.2x,
故答案为:2.6(6﹣x)=18﹣3.2x.
(2)设苹果购买金额为y元,所列方程正确的是①③,
故答案为:①③.
17.解:(1)由题意可得,
甲车行驶的路程为:120x,
乙车行驶的速度为:120×=60km/h,行驶的时间为:x﹣=(x﹣)h,行驶的路程为:60(x﹣)km,
故答案为:120x;60,x﹣,60(x﹣);
(2)①当甲车到达B地时,乙车与B地的距离为:a﹣60()=()km;
②当两车相遇时,甲、乙两车行驶路程之间的相等关系是:120x+60(x﹣)=2a;
③甲车到达A地时,x=×2=,
当乙车到达B地时,x==,
故甲先到达,
故答案为:,,甲.
18.解:(1)可得:标价为:x+60;售价为:0.8x+48,
故答案为:x+60;0.8x+48;
(2)根据题意可得:(0.8x+48)﹣x=24,
故答案为:(0.8x+48)﹣x=24.