人教版九年级数学 上册 第二十五章 概率初步 单元综合与测试(word含答案)

文档属性

名称 人教版九年级数学 上册 第二十五章 概率初步 单元综合与测试(word含答案)
格式 zip
文件大小 66.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-10-21 23:47:28

图片预览

文档简介

第二十五章
概率初步
单元复习与检测题(含答案)
一、选择题
1、下列事件中,是必然事件的为(  )
A.3天内会下雨
B.打开电视,正在播放广告
C.367人中至少有2人公历生日相同
D.某妇产医院里,下一个出生的婴儿是女孩
2、某品牌电插座抽样检查的合格的概率为99%,则下列说法中正确的是(  )
A.购买100个该品牌的电插座,一定有99个合格
B.购买1
000个该品牌的电插座,一定有10个不合格
C.购买20个该品牌的电插座,一定都合格
D.即使购买1个该品牌的电插座,也可能不合格
3、某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,则恰好选中两名男学生的概率是(  )
A.
B.
C.
D.
4、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为(  )
A.
B.
C.
D.
5、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(  )
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
6、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为?10%?,他明天将参加一场比赛,下面几种说法正确的是(???
)
A.小亮明天的进球率为?10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
7、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.
每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是(

A.
6
B.
10
C.
18
D.
20
8、元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为(  )
A.
B.
C.
D.
9、某超市在“五·一”期间开展有奖促销活动,每买100元商品,可参加抽奖一次,中奖的概率为,小张这期间在该超市买商品获得了三次抽奖机会,则小张(
)
A.能中奖一次
B.能中奖二次
C.至少能中奖一次
D.中奖次数不能确定
10、小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为(  )
A.
B.
C.
D.
填空题
11、在英语考试中,一道选择题有四个答案,小红任意选了一个,选错的可能性________选对的可能性.(填“>”“<”或“=”)
12、请写出一个概率小于的随机事件:_____________________________________________.
13、在1,2,3,4四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于40的概率是________.
14、一个不透明的袋子中装有仅颜色不同的2个红球和2个白球.两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是________.
15、为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为________个.
三、解答题
16、
一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.
17、在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?
18、一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.
19、将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是A型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
20、已知M(x,y)是平面直角坐标系xOy中的点,其中x是从l、2、3三个数中任取的一个数,y是从l、2、3、4四个数中任取的一个数
.
(l)计算由x、y确定的点M(x,y)在函数y=
-x+5的图象上的概率;
(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜;若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.
若不公平,请写出公平的游戏规则;
(3)定义“点M(x,y)在直线x+y=n上”为事件A(2≤n≤7,n为整数),则当A的概率最大时,n的所有可能的值为
.(不需要解答过程)
参考答案:
一、1、C
2、D
3、A
4、B
5、D
6、C
7、D
8、D
9、A
10、C
二、

12、答案不唯一,如:在一个不透明的袋子里,有三个大小和形状完全相同的球,其中有两个红球和一个黄球,摸出黄球的概率是多少
13、
14、
15、20
三、
16、【考点】列表法与树状图法.
【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
【解答】解:画树形图如下:
由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.
【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
17、(1)当n=7或8或9时,这个事件必然发生;
(2)当n=1或2时,这个事件不可能发生;
(3)当n=3或4或5或6时,这个事件可能发生.
18、【考点】列表法与树状图法;概率公式.
【分析】(1)由一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于不放回实验;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于放回实验.
【解答】解:(1)∵一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,
∴任取一球,共有4种不同结果,
∴球上汉字刚好是“黄”的概率为:;
(2)画树状图得:
∵共有12种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,
∴P1==;
(3)画树状图得:
∵共有16种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,
∴P2==,
∴P1>P2.
【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)(2)
20、(1);
(2)P(小明胜)=,P(小红胜)=;游戏规则改为:若x,y满足xy>6则小明得7分,若x、y满足xy<6则小红得3分;
(3)4、5
.