第6章 一次函数 单元测试卷
一、选择题(共8小题).
1.(3分)函数y=﹣中,自变量x的取值范围是( )
A.x≤ B.x≥ C.x<且x≠﹣1 D.x≤且x≠﹣1
2.(3分)下列函数中,正比例函数是( )
A.y=﹣8x B.y= C.y=8x2 D.y=8x﹣4
3.(3分)若ab<0且a>b,则函数y=ax+b的图象可能是( )
A. B.
C. D.
4.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是( )
A. B.
C. D.
5.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )
A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0
6.(3分)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为( )
A. B. C.2 D.4
7.(3分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于( )
A.﹣1 B.0 C.3 D.4
8.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为( )
A.9 B.10 C.12 D.13
二、填空题(共8小题).
9.(4分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2.(填“>”“<”“=”)
10.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是 .
11.(4分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 .
12.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 .
13.(4分)在平面直角坐标系中,将函数y=2x﹣3的图象先向右平移2个单位长度,再沿y轴翻折,所得函数对应的表达式为 .
14.(4分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 .
三、解答题(15-18每题10分,19题12分,共52分)
15.(10分)已知函数y=(2m+1)x+m﹣3.
(1)若这个函数的图象经过原点,求m的值
(2)若这个函数的图象不经过第二象限,求m的取值范围.
16.(10分)一次函数y=kx+b的图象与y轴相交于点(0,﹣3),且方程kx+b=0的解为x=2,求这个一次函数的解析式.
17.(10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).
(1)求直线l1的解析式;
(2)求四边形PAOC的面积.
18.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.
(1)求这个一次函数的解析式;
(2)设点C在y轴上,当AC=BC时,求点C的坐标.
19.(12分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.
(1)求y关于x的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
参考答案
一、选择题(每小题3分,共24分)
1.(3分)函数y=﹣中,自变量x的取值范围是( )
A.x≤ B.x≥ C.x<且x≠﹣1 D.x≤且x≠﹣1
解:根据题意得:2﹣3x≥0且x+1≠0,
解得:x≤且x≠﹣1.
故选:D.
2.(3分)下列函数中,正比例函数是( )
A.y=﹣8x B.y= C.y=8x2 D.y=8x﹣4
解:A、y=﹣8x,是正比例函数,符合题意;
B、y=,是反比例函数,不合题意;
C、y=8x2,是二次函数,不合题意;
D、y=8x﹣4,是一次函数,不合题意;
故选:A.
3.(3分)若ab<0且a>b,则函数y=ax+b的图象可能是( )
A. B.
C. D.
解:∵ab<0,且a>b,
∴a>0,b<0,
∴函数y=ax+b的图象经过第一、三、四象限.
故选:A.
4.(3分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是( )
A. B.
C. D.
解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∵一次函数y=x+k的一次项系数大于0,常数项小于0,
∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
故选:A.
5.(3分)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,则下列结论正确的是( )
A.k<2,m>0 B.k<2,m<0 C.k>2,m>0 D.k<0,m<0
解:∵一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x的增大而减小,
∴k﹣2<0,﹣m<0,
∴k<2,m>0.
故选:A.
6.(3分)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为( )
A. B. C.2 D.4
解:一次函数y=2x+1中,
当x=0时,y=1;当y=0时,x=﹣0.5;
∴A(﹣0.5,0),B(0,1)
∴OA=0.5,OB=1
∴△AOB的面积=0.5×1÷2=
故选:A.
7.(3分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于( )
A.﹣1 B.0 C.3 D.4
解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴
∴,
∴y=3x+1,
将点(a,10)代入解析式,则a=3;
故选:C.
8.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为( )
A.9 B.10 C.12 D.13
解:过点C作CM⊥x轴于点M,过点A做AN⊥y轴于点N,
∵∠COM+∠MOA=∠MOA+∠NOA=90°,
∴∠NOA=∠COM,
又因为OA=OC,
∴Rt△OCM≌Rt△OAN(ASA),
∴OM=ON,CM=AN,
设点C (a,b),
∵点A在函数y=2x﹣5的图象上,
∴b=2a﹣5,
∴CM=AN=2a﹣5,OM=ON=a,
∴A(2a﹣5,﹣a),
∴﹣a=2(2a﹣5)﹣5,
∴a=3,
∴A(1,﹣3),
在直角三角形OCM中,由勾股定理可求得OA=
∴正方形OABC的面积是10,
故选:B.
二、填空题(每小题4分,共24分)
9.(4分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 > y2.(填“>”“<”“=”)
解:∵一次函数y=﹣2x+1中k=﹣2<0,
∴y随x的增大而减小,
∵x1<x2,
∴y1>y2.
故答案为:>.
10.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是 x=2 .
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),
∴关于x的方程ax+b=0的解是x=2.
故答案为x=2.
11.(4分)当直线y=(2﹣2k)x+k﹣3经过第二、三、四象限时,则k的取值范围是 1<k<3 .
解:y=(2﹣2k)x+k﹣3经过第二、三、四象限,
∴2﹣2k<0,k﹣3<0,
∴k>1,k<3,
∴1<k<3;
故答案为1<k<3;
12.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是 (32,4800) .
解:令150t=240(t﹣12),
解得,t=32,
则150t=150×32=4800,
∴点P的坐标为(32,4800),
故答案为:(32,4800).
13.(4分)在平面直角坐标系中,将函数y=2x﹣3的图象先向右平移2个单位长度,再沿y轴翻折,所得函数对应的表达式为 y=﹣2x﹣7 .
解:将函数y=2x﹣3的图象先向右平移2个单位长度,所得的函数是y=2(x﹣2)﹣3,即y=2x﹣7
将该函数的图象沿y轴翻折后所得的函数关系式y=2(﹣x)﹣7,即y=﹣2x﹣7
故答案为y=﹣2x﹣7.
14.(4分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 P(,) .
解:∵在Rt△ABO中,∠OBA=90°,A(4,4),
∴AB=OB=4,∠AOB=45°,
∵=,点D为OB的中点,
∴BC=3,OD=BD=2,
∴D(2,0),C(4,3),
作D关于直线OA的对称点E,连接EC交OA于P,
则此时,四边形PDBC周长最小,E(0,2),
∵直线OA 的解析式为y=x,
设直线EC的解析式为y=kx+b,
∴,
解得:,
∴直线EC的解析式为y=x+2,
解得,,
∴P(,),
故答案为:(,).
三、解答题(15-18每题10分,19题12分,共52分)
15.(10分)已知函数y=(2m+1)x+m﹣3.
(1)若这个函数的图象经过原点,求m的值
(2)若这个函数的图象不经过第二象限,求m的取值范围.
解:(1)将原点坐标(0,0)代入解析式,得m﹣3=0,即m=3,
所求的m的值为3;
(2)当2m+1=0,即m=﹣,函数解析式为:y=﹣,图象不经过第二象限;
当2m+1>0,即m>﹣,并且m﹣3≤0,即m≤3,所以有﹣<m≤3;
所以m的取值范围为﹣≤m≤3.
16.(10分)一次函数y=kx+b的图象与y轴相交于点(0,﹣3),且方程kx+b=0的解为x=2,求这个一次函数的解析式.
解:∵方程kx+b=0的解为x=2,
∴一次函数y=kx+b的图象经过点(2,0).
把(0,﹣3)、(2,0)代入y=kx+b中,
得,
解得.
故一次函数的解析式是y=x﹣3.
17.(10分)如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).
(1)求直线l1的解析式;
(2)求四边形PAOC的面积.
解:(1)∵点P(﹣1,a)在直线l2:y=2x+4上,
∴2×(﹣1)+4=a,即a=2,
则P的坐标为(﹣1,2),
设直线l1的解析式为:y=kx+b(k≠0),
那么,
解得:.
∴l1的解析式为:y=﹣x+1.
(2)∵直线l1与y轴相交于点C,
∴C的坐标为(0,1),
又∵直线l2与x轴相交于点A,
∴A点的坐标为(﹣2,0),则AB=3,
而S四边形PAOC=S△PAB﹣S△BOC,
∴S四边形PAOC=.
18.(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=x,且经过点A(2,3),与x轴交于点B.
(1)求这个一次函数的解析式;
(2)设点C在y轴上,当AC=BC时,求点C的坐标.
解:(1)设一次函数的解析式为:y=kx+b,
∵一次函数的图象平行于直线y=x,
∴k=,
∵一次函数的图象经过点A(2,3),
∴3=+b,
∴b=2,
∴一次函数的解析式为y=x+2;
(2)由y=x+2,令y=0,得x+2=0,
∴x=﹣4,
∴一次函数的图形与x轴的解得为B(﹣4,0),
∵点C在y轴上,
∴设点C的坐标为(0,y),
∵AC=BC,
∴=,
∴y=﹣,
经检验:y=﹣是原方程的根,
∴点C的坐标是(0,﹣).
19.(12分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.
(1)求y关于x的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
解:(1)设y关于x的函数解析式是y=kx+b,
,解得,,
即y关于x的函数解析式是y=﹣x+6;
(2)当h=0时,0=﹣x+6,得x=20,
当y=0时,0=﹣x+6,得x=30,
∵20<30,
∴甲先到达地面.