三年级上册数学一课一练-数学好玩-搭配中的学问 北师大版(2014秋)(含答案)

文档属性

名称 三年级上册数学一课一练-数学好玩-搭配中的学问 北师大版(2014秋)(含答案)
格式 docx
文件大小 60.3KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-10-26 16:24:49

图片预览

文档简介

三年级上册数学一课一练-数学好玩-搭配中的学问
一、单选题
1.一列火车往返于苏州和南京之间,途中要停靠无锡、常州、镇江3个站,这列火车要准备( ???)种不同的车票。
A.?5?????????????????????????????????????????B.?10?????????????????????????????????????????C.?15?????????????????????????????????????????D.?20
2.用2、5、7、9组成没有重复数字的两位数,能组成(? )个个位是单数的两位数。
A.?9?????????????????????????????????????????????B.?3?????????????????????????????????????????????C.?12
3.如图是一个轴对称图形,若将图中阴影部分的圆形或月牙形去掉,可以得到一些新图形,则得到的新图形仍然是轴对称图形的共有(  )个.
A.?5???????????????????????????????????????????B.?6???????????????????????????????????????????C.?7???????????????????????????????????????????D.?8
4.用0、2、4、5组成的三位小数中,最小的是(?? )
A.?0.425???????????????????????????????????????B.?0.245???????????????????????????????????????C.?0.254
5.在1~99中,任取两个和小于100的数,共有多少种不同的取法?(  )
A.?5051????????????????????????????????????????B.?1420????????????????????????????????????????C.?2401
二、判断题
6.某学校要从4名女同学和3名男同学中各选出1人代表学校参加演讲比赛。一共有7种不同的组队方案。
7.有三个同学,每两人握一次手,一共要握6次手。
8.用 组成的最小的四位数是“0248”.
9.有4位同学参加乒乓球比赛,每两人比赛一场,一共要比6场。
10.用2、3、5、0可以写出6个不同的四位数。
三、填空题
11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案。
12.用3、5、7组成的两位数有________个,最大数与最小数的差是________。

13.在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格中只填一个数,现将每行中放有最大数的格子染成红色,最小数的格子染成绿色.设M是红格中的最小数,m是绿格中的最大数,则M﹣m可以取到________个不同的值.
14.如下图,有3件上衣和2条裤子,要配成一套衣服(上衣和裤子各1件),有________种不同的搭配方法。

15.从0,1,5,9中任选3个数字组成三位数,最大的三位数是________,最小的三位数是________,同时是2,3,5的倍数的数有________和________。
四、解答题
16.从南通到南京的汽车,除起点、终点外,中途还要停靠5个站。汽车公司要为这趟汽车准备多少种车票?
17.一种电子表在6时24分30秒时的显示为 : : , 那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?
五、综合题
18.?(1)有一堆煤重53吨,如果用一辆载重5吨的汽车,那么至少________次才能运完.
(2)小红有3件不同的上衣和3条不同的裤子,选择1件上衣和1条裤子搭配成一套衣服,有________种搭配方法.
参考答案
一、单选题
1.【答案】 D
【解析】【解答】解:共5个站,需要准备的车票:5×(5-1)=20(种)。
故答案为:D。
【分析】从苏州到南京共5个站(包括苏州和南京),每两个站点之间会有往返两种车票,从每个站点出发都会有(5-1)种车票,由此计算车票种数即可。
2.【答案】 A
【解析】【解答】解:用2、5、7、9组成没有重复数字的两位数,能组成9个个位是单数的两位数。
故答案为:A。
【分析】2、5、7、9这些数中,单数是5、7、9,所以组成没有重复数字的两位数有:25、75、95、27、57、97、29、59、79,能组成9个个位是单数的两位数。
3.【答案】 C
【解析】【解答】解:根据轴对称图形的意义可知:若将图中阴影部分的圆形或月牙形去掉,可以得到一些新图形,则得到的新图形仍然是轴对称图形有:每次去掉一个有3种情况,每次去掉2个有3种情况,一次去掉3个有一种情况,
共有3+3+1=7个轴对称图形;
故选:C.
【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次分类去掉一个图形、2个图形、3个图形,看能组成几个轴对称图形,再相加即可.
4.【答案】 B
【解析】【解答】 用0、2、4、5组成的三位小数中,最小的是0.245 。
故答案为:B。
【分析】根据题意可知,要求用0、2、4、5组成的三位小数中,最小的是多少,先确定整数部分,整数部分最小是0,然后把剩下的三个数按从小到大排列,据此写数即可。
5.【答案】 C
【解析】【解答】解:1有97种不同的取法,
2有95种不同的取法,
3有93种不同的取法,
4有91种不同的取法,

48有3种不同的取法,
49有1种不同的取法,
所以共有:97+95+93+91+..+3+1,
=(97+1)×49÷2,
=2401(种);
答:共有2401种不同的取法.
故选:C.
【分析】根据任取两个和小于100的数可知,99分解成差最大的两个数是1和98,最小的两个数是49和50,所以根据第一个加数是1~49,分组讨论即可得出答案.
二、判断题
6.【答案】 错误
【解析】【解答】解:1名女同学可以与3名男同学搭配,即对应3种不同的方案,因为有4名女同学,所以一共有4×3=12种组队方案。
故答案为:错误。
【分析】不同方案的数量=女同学的数量×男同学的数量,据此代入数据解答即可。
7.【答案】 错误
【解析】【解答】 3×2÷2=3(次)
故答案为:错误。
【分析】握手的次数=人数×(人数-1)÷2。
8.【答案】 错误
【解析】
9.【答案】 正确
【解析】【解答】解:3+2+1=6(场),原题说法正确。
故答案为:正确。
【分析】第一位同学与另外三位同学比赛3场;第二位同学与剩下的两位同学比赛2场;第三位同学与第四位同学比赛1场就结束了。所以共比赛6场。
10.【答案】 错误
【解析】【解答】 用2、3、5、0可以写出12个不同的四位数:2350、2305、2530、2503、3250、3205、3520、3502、5230、5203、5320、5302,原题说法错误。
故答案为:错误。
【分析】此题主要考查了排列和组合的知识,先确定千位上的数字,当千位上是2时,百位是3,十位是5或0,个位是0或5;当千位上是2时,百位是5,十位是3或0,个位是0或3,可以组成4个不同的四位数;同样的方法,当千位上是3时,可以组成4个不同的四位数;当千位是5时,可以组成4个不同的四位数,一共有4×3=12种不同的四位数,据此解答。
三、填空题
11.【答案】12
【解析】【解答】解:3×4=12(种);
故答案为:12.
【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.
12.【答案】 6;40
【解析】
13.【答案】8
【解析】【解答】解:三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.
又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.
同理,m也不可能是1、2、8、9.
这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).
因此,考虑正负可以取到:﹣4、﹣3、﹣2、﹣1、1、2、3、4.
所以,共有8种不同的值.
答:M﹣m可以取到8个不同的值.
故答案为:8.
【分析】共有三行,三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).据此解答即可.
14.【答案】 6
【解析】【解答】1件上衣就有2种搭配方法,有3件上衣就有2×3=6(种)搭配方法,
故答案为:6。
【分析】先确定一件上衣有几种搭配方法,再确定有几件上衣,最后用乘法计算即可。
15.【答案】 951;105;150;510
【解析】【解答】最大的三位数的百位数字是9,十位数字是5,个位数字是1,最大的三位数是951;
最小的三位数的百位数字是1,十位数字是0,个位数字是5,最小的三位数是105;
同时是2,3,5的倍数的数的末位数字是0,这样的数有150,510.
故答案为:951;105;150;510
【分析】要使组成的数字最大,就要把最大的数字放在最高位上;要使组成的数字最小,就把最小的数字放在最高位上;同时是2,3,5的数的末位数字是0,且各个数位上数字之和是3的倍数.
四、解答题
16.【答案】 解:6+5+4+3+2+1=21(种)
答:汽车公司要为这趟汽车准备21种车票、
【解析】【分析】车票种数=站点总数×(站点总数-1),比如:从起点到终点和回来应该是两种票,所以车票的种数计算是排列,有顺序的。
17.【答案】 解:×=1260(种)
答:从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。
【解析】【分析】题中是在8时到9时的时间,所以设这个时间是设A:BC:DE是满足题意的时刻,A=8,B、D应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有种选法,而C、E应从剩下的7个数字中选择两个不同的数字,所以有 种选法,所以共有×=1260种选法。
五、综合题
18.【答案】 (1)11
(2)9
【解析】【解答】(1)53÷5=10……3,所以运10次后还剩下3吨需要运,即还需再运一次,共需要运送11次。
(2)3×3=9(种),所以有9中搭配方法。
故答案为:11;9。
【分析】(1)用煤的总吨数除以每次汽车运送的吨数,即可得出需要运送的次数,注意若不整除,得出的商需要+1;
(2)先选1件上衣再与裤子进行搭配,有3种方法;依次再选第2件上衣与裤子进行搭配,仍有3种方法;同样第3件上衣与裤子进行搭配,有3种方法,即可得出总共搭配的方法为3×3。