第三节 动量守恒定律
(1)动量守恒定律适用于宏观物体,不适用于微观粒子。(×)
(2)一个系统初、末状态动量大小相等,即动量守恒。(×)
(3)两个做匀速直线运动的物体发生碰撞,这两个物体组成的系统动量守恒。(√)
(4)系统动量守恒也就是系统的动量变化量为零。(√)
(5)系统动量守恒,动能不一定守恒,某一方向上动量守恒,系统整体动量不一定守恒。(√)
『选一选』
(多选)下列四幅图所反映的物理过程中,系统动量守恒的是( AC )
解析:A中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B中在弹簧恢复原长过程中,系统在水平方向始终受墙的作用力,系统动量不守恒;C中木球与铁球的系统所受合外力为零,系统动量守恒;D中木块下滑过程中,斜面始终受挡板的作用力,系统动量不守恒。
『想一想』
如图三国演义“草船借箭”中,若草船的质量为m1,每支箭的质量为m,草船以速度v1返回时,对岸士兵万箭齐发,n支箭同时射中草船,箭的速度皆为v,方向与船行方向相同。由此,草船的速度会增加多少?(不计水的阻力)
答案:(v-v1)
解析:船与箭的作用过程系统动量守恒:m1v1+nmv=(m1+nm)(v1+Δv)得Δv=(v-v1)。
课内互动探究
细研深究·破疑解难·萃取精华
探究?
对动量守恒定律的理解
┃┃思考讨论1__■
在光滑的水平面上有一辆平板车,一个人站在车上用大锤敲打车的左端,如图所示。在连续的敲打下,这辆车能持续地向右运动吗?
提示:当把锤头打下去时,锤头向右摆动,系统总动量要为零,车就向左运动;举起锤头时,锤头向左运动,车就向右运动。用锤头连续敲击时,车只是左右运动,一旦锤头不动,车就会停下来,所以车不能持续向右运动。
┃┃归纳总结__■
1.研究对象
两个或两个以上相互作用的物体组成的系统。
2.对系统“总动量保持不变”的理解
(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等。
(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化。
(3)系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变。
3.动量守恒定律成立的条件
(1)理想守恒:系统不受外力或系统所受外力的矢量和为零。
(2)近似守恒:系统所受外力的矢量和虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力、爆炸过程中的重力等外力比起相互作用的内力小得多,可以忽略不计。
(3)某一方向上守恒:系统所受外力的矢量和虽不为零,但在某个方向上的分量为零,则在该方向上系统动量守恒。
4.从“五性”理解动量守恒定律
(1)系统性:动量守恒是针对满足守恒条件的系统而言的,系统改变,动量不一定守恒。
(2)矢量性:定律的表达式是一个矢量式。
a.该式说明系统的总动量在任意两个时刻不仅大小相等,而且方向也相同。
b.在求系统的总动量p=p1+p2+…时,要按矢量运算法则计算。
(3)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量,必须相对于同一惯性系,各物体的速度通常均为相对于地的速度。
(4)同时性:动量守恒定律中p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′…必须是系统中各物体在相互作用后同一时刻的动量。
(5)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
特别提醒
(1)分析动量守恒时要着眼于系统,要在不同的方向上研究系统所受外力的矢量和。
(2)要深刻理解动量守恒的条件。
(3)系统动量严格守恒的情况是很少的,在分析守恒条件是否满足时,要注意对实际过程的理想化。
┃┃典例剖析__■
典例1 (多选)如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( ACD )
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,此后动量不守恒
C.先放开左手,后放开右手,总动量向左
D.无论是否同时放手,只要两手都放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零
解题指导:→→
要注意同时放开两手和一先一后放开的区别
解析:当两手同时放开时,系统的合外力为零,所以系统的动量守恒,又因为开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的小车就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,放开右手时总动量方向向左,放开右手后总动量方向也向左,故选项B错误而C、D正确。综合上述分析可知选项A、C、D正确。
┃┃对点训练__■
1.(2020·北京市通州区高二下学期段考)如图所示,两木块A、B用轻质弹簧连在一起,置于光滑的水平面上。一颗子弹水平射入木块A,并留在其中。在子弹打中木块A及弹簧被压缩的整个过程中,对子弹、两木块和弹簧组成的系统,下列说法中正确的是( B )
A.动量守恒、机械能守恒
B.动量守恒、机械能不守恒
C.动量不守恒、机械能守恒
D.动量、机械能都不守恒
解析:子弹击中木块A及弹簧被压缩的整个过程,系统在水平方向不受外力作用,系统动量守恒,但是子弹击中木块A过程,有摩擦力做功,部分机械能转化为内能,所以机械能不守恒,B正确,ACD错误。
探究?
动量守恒定律的应用
┃┃思考讨论2__■
如图所示,质量为M的小船在静止水面上以速度v0向右匀速行驶,一质量为m的救生员站在船尾,相对小船静止。若救生员以相对水面速率v水平向左跃入水中,由此,能推知救生员跃出后小船的速率吗?(不计水的阻力)
提示:根据动量守恒定律,选向右方向为正方向,则有(M+m)v0=Mv船-mv,解得v船=v0+(v0+v)。
┃┃归纳总结__■
1.应用动量守恒定律的解题步骤:
↓
↓
↓
↓
2.动量守恒定律不同表现形式的表达式的含义:
(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反。
(3)Δp=0:系统总动量增量为零。
(4)m1v1+m2v2=m1v′1+m2v′2:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
3.某一方向上动量守恒问题:动量守恒定律的适用条件是普遍的,当系统所受的合外力不为零时,系统的总动量不守恒,但是在不少情况下,合外力在某个方向上的分量却为零,那么在该方向上系统的动量分量就是守恒的。
4.爆炸类问题中动量守恒定律的应用:
(1)物体间的相互作用突然发生,作用时间很短,爆炸产生的内力远大于外力(如重力、摩擦力等),可以利用动量守恒定律求解。
(2)由于爆炸过程中物体间相互作用的时间很短,作用过程中物体的位移很小,因此可认为此过程物体位移不发生变化。
特别提醒
(1)动量守恒定律中的各速度都相对同一参考系,一般以地面为参考系。
(2)规定正方向后,方向与正方向一致的矢量取正值,方向与正方向相反的矢量取负值。
┃┃典例剖析__■
典例2 一人站在静止于冰面的小车上,人与车的总质量M=70 kg,当它接到一个质量m=20 kg、以速度v0=5 m/s 迎面滑来的木箱后,立即以相对于自己v′=5 m/s的速度逆着木箱原来滑行的方向推出,不计冰面阻力。则小车获得的速度是多大?方向如何?
解题指导:→→→→
解析:设推出木箱后小车的速度为v,此时木箱相对地面的速度为(v′-v),由动量守恒定律得mv0=Mv-m(v′-v)
v==m/s=2.2 m/s。
与木箱的初速度v0方向相同。
答案:2.2 m/s 方向与木箱的初速度v0相同
┃┃对点训练__■
2.如图所示,进行太空行走的宇航员A和B的质量分别为80 kg和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s。A将B向空间站方向轻推后,A的速度变为0.2 m/s,求此时B的速度大小和方向。
答案:0.02 m/s 远离空间站方向
解析:根据动量守恒,(mA+mB)v0=mAvA+mBvB,代入数 据可解得vB=0.02 m/s,方向为离开空间站方向。
探究?
动量守恒定律与机械能守恒定律的比较
┃┃思考讨论3__■
冲击摆的装置是一个用细线悬挂着的砂箱(如图所示),其过程为一粒质量为m的弹丸以水平速度v击中砂箱,弹丸陷入箱内,使砂箱摆至某一高度。此过程中,子弹和砂箱组成的系统动量守恒吗?机械能守恒吗?
提示:子弹射入砂箱的过程,动量守恒,机械能不守恒;子弹和砂箱向上摆动的过程,动量不守恒,机械能守恒。
┃┃归纳总结__■
动量守恒定律与机械能守恒定律的比较
项目 动量守恒定律 机械能守恒定律
相 同
点 研究对象 相互作用的物体组成的系统
研究过程 某一运动过程
不 同
点
守恒条件 系统不受外力或所受外力的矢量和为零 系统只有重力或弹力做功
表达式 p1+p2=p′1+p′2 Ek1+Ep1=Ek2+Ep2
表达式的
矢标性 矢量式 标量式
某一方向
上应用情况 可在某一方向独立使用 不能在某一方向独立使用
运算法则 用矢量法则进行合成或分解 代数和
特别提醒
(1)系统的动量(机械能)是否守恒,与选择哪几个物体作为系统和分析哪一段运动过程有直接关系。
(2)对于涉及相互作用的系统的能量转化问题时,可综合应用动量守恒定律、机械能守恒定律、动能定理、能量守恒定律、功能关系列出相应方程分析解答。
┃┃典例剖析__■
典例3 在光滑水平面上有一质量M=4 kg的滑块,滑块的一侧为一光滑的圆弧,水平面恰好与圆弧相切,圆弧半径R=1 m。一质量m=1 kg的小球以速度v0向右运动冲上滑块,g取10 m/s2。若小球刚好没有冲出圆弧的上端,求:
(1)小球的初速度v0的大小;
(2)滑块获得的最大速度。
解析指导:(1)小球与滑块相互作用的过程中水平方向上动量守恒。
(2)该系统的机械能守恒。
(3)小球从滑块左端滑出时滑块获得的速度最大。
解析:(1)当小球上升到滑块的最上端时,小球与滑块水平方向的速度相同,设为v1,根据水平方向动量守恒有:
mv0=(m+M)v1
系统机械能守恒,有:mv=(m+M)v+mgR
解得:v0=5 m/s
(2)小球到达最高点以后又滑回,此过程滑块做加速运动,当小球离开滑块时滑块的速度最大,研究小球从开始冲上滑块到离开滑块的过程,根据动量守恒和机械能守恒,有:
mv0=mv2+Mv3
mv=mv+Mv
解得: v3=2 m/s。
答案:(1)5 m/s (2)2 m/s
┃┃对点训练__■
3.(多选)如图所示,轻质弹簧的一端固定在墙上,另一端与质量为m的物体A相连,A放在光滑水平面上,有一质量与A相同的物体B,从高h处由静止开始沿光滑曲面滑下,与A相碰后一起将弹簧压缩,弹簧复原过程中某时刻B与A分开且沿原曲面上升。下列说法正确的是( BD )
A.弹簧被压缩时所具有的最大弹性势能为mgh
B.弹簧被压缩时所具有的最大弹性势能为
C.B能达到的最大高度为
D.B能达到的最大高度为
解析:设碰前瞬间B物体的速度为vB有:mgh=mv,解得:vB=,根据动量守恒:mvB=(m+m)v共,所以v共=vB=,从碰完到压缩弹簧最短,根据机械能守恒有:Epm=(m+m)v=,A错误;B正确;刚要分开时两物体具有相同的速度,设为v′,从压缩最短到分开,根据机械能守恒有:Epm=(m+m)v′2=,解得:v′=,之后B物体开始冲上斜面,根据机械能守恒,有:mv′2-0=mghm,解得:hm=,C错误;D正确。
核心素养提升
易错警示·以题说法·启智培优
动量守恒定律应用中的临界问题
1.寻找临界状态
题设情景中看是否有相互作用的两物体相距最近、恰好滑离、避免相碰和物体开始反向运动等临界状态。
2.挖掘临界条件
在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系。
3.常见类型
(1)涉及弹簧类的临界问题
对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。
(2)涉及相互作用边界的临界问题
在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面最高点时,在竖直方向上的分速度等于零。
(3)子弹打木块类的临界问题
子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位移为木块位移与木块厚度之和。
案例
如图所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏。甲和他的冰车的质量共为M=30 kg,乙和他的冰车总质量也是30 kg,游戏时,甲推着一个质量为m=15 kg的箱子,和他一起以大小为v0=2.0 m/s的速度滑行,乙以同样大小的速度迎面滑来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞。
解题指导: 本题从动量守恒定律的应用角度看并不难,但需对两个物体的运动关系分析清楚(乙和箱子、甲的运动关系如何,才能不相撞)。这就需要我们要将“不相撞”的实际要求转化为物理条件,即:甲、乙可以同方向运动,但只要乙的速度不小于甲的速度,就不可能相撞。
解析:如图所示,在甲推出箱子的过程中,甲和箱子组成的系统动量守恒。乙接到箱子并和乙一起运动的过程中,乙和箱子组成的系统动量也是守恒的,分别选甲、箱子为研究对象,箱子、乙为研究对象求解。要想刚好避免相撞,要求乙抓住箱子后与甲的速度正好相等。
设甲推出箱子后的速度为v1,箱子的速度为v,乙抓住箱子后的速度v2。
对甲和箱子,推箱子前后动量守恒,以初速度方向为正,由动量守恒定律:(M+m)v0=mv+Mv1①
对乙和箱子,抓住箱子前后动量守恒,以箱子初速方向为正,由动量守恒定律有:
mv-Mv0=(m+M)v2②
刚好不相撞的条件是:v1=v2③
联立①②③解得:v=5.2 m/s,方向与甲和箱子初速的方向一致。
答案:5.2 m/s,方向与甲的初速度方向相同