北师大版九年级数学上册《1.2 矩形的性质与判定》 同步练习卷(Word版 含答案)

文档属性

名称 北师大版九年级数学上册《1.2 矩形的性质与判定》 同步练习卷(Word版 含答案)
格式 zip
文件大小 217.6KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-10-29 08:35:07

图片预览

文档简介

1.2
矩形的性质与判定
一.选择题
1.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为(  )
A.
B.
C.
D.
2.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是(  )
A.OM=AC
B.MB=MO
C.BD⊥AC
D.∠AMB=∠CND
3.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE平分∠BAO,则AB的长为(  )
A.3
B.4
C.
D.
4.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则(  )
A.(θ1+θ4)﹣(θ2+θ3)=30°
B.(θ2+θ4)﹣(θ1+θ3)=40°
C.(θ1+θ2)﹣(θ3+θ4)=70°
D.(θ1+θ2)+(θ3+θ4)=180°
5.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为(  )
A.
B.4
C.4.5
D.5
6.如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是(  )
A.(2,7)
B.(3,7)
C.(3,8)
D.(4,8)
7.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为(  )
A.(3,1)
B.(3,)
C.(3,)
D.(3,2)
8.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )
A.4.8
B.5
C.6
D.7.2
9.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:
①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,
其中正确的有(  )
A.2个
B.3个
C.4个
D.5个
10.如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为(  )
A.1
B.
C.
D.
二.填空题
11.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为 
 .
12.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB,OC,点E在线段BC上(点E不与B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为 
 .
13.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为 
 .
14.如图,在矩形ABCD中,对角线AC、BD相交于O,DE⊥AC于E,∠EDC:∠EDA=1:2,且AC=10,则DE的长度是 
 .
三.解答题
15.已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.
答:对图(2)的探究结论为 
 ;
对图(3)的探究结论为 
 ;
证明:如图(2)
16.如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.
17.已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.
18.如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.
(1)求证:AE=DC;
(2)已知DC=,求BE的长.
19.如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.
(1)求证:∠PNM=2∠CBN;
(2)求线段AP的长.
20.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.
(1)求证:OE=OF;
(2)若BC=2,求AB的长.
参考答案
一.选择题
1.
C.
2.
A.
3.
C.
4.A.
5.
D.
6.
A.
7.
B.
8.
A.
9.
C.
10.
D.
二.填空题
11.

12.

13.(2.5,4),或(3,4),或(2,4),或(8,4).
14.

三.解答题
15.解:结论均是PA2+PC2=PB2+PD2.
(1)如图2,过点P作MN∥AB,交AD于点M,交BC于点N,
∴四边形ABNM和四边形NCDM均为矩形,
根据(1)中的结论可得,
在矩形ABNM中有PA2+PN2=PB2+PM2,在矩形NCDM中有PC2+PM2=PD2+PN2,
两式相加得PA2+PN2+PC2+PM2=PB2+PM2+PD2+PN2,
∴PA2+PC2=PB2+PD2.
(2)如图3,过点P作MN∥AB,交AB的延长线于点M,交CD的延长线于点N,
∴四边形BCNM和四边形ADNM均为矩形,
同样根据(1)中的结论可得,
在矩形BCNM中有PC2+PM2=PB2+PN2,在矩形ADNM中有PA2+PN2=PD2+PM2,
两式相加得PA2+PN2+PC2+PM2=PD2+PM2+PB2+PN2,
∴PA2+PC2=PB2+PD2.
16.证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.
17.解:矩形.
理由是:连接OM,
∵AB=CD,BC=DA,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AM⊥MC,BM⊥MD,
∴∠AMC=∠BMD=90°,
∴OM=BD,OM=AC,
∴BD=AC,
∴四边形ABCD是矩形.
答:四边形ABCD是矩形.
18.(1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
在△AEF和△DCE中,

∴△AEF≌△DCE(AAS),
∴AE=DC;
(2)解:由(1)得AE=DC,
∴AE=DC=,
在矩形ABCD中,AB=CD=,
在Rt△ABE中,AB2+AE2=BE2,即()2+()2=BE2,
∴BE=2.
19.解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,
∴MN∥BC,
∴∠CBN=∠MNB,
∵∠PNB=3∠CBN,
∴∠PNM=2∠CBN;
(2)连接AN,
根据矩形的轴对称性,可知∠PAN=∠CBN,
∵MN∥AD,
∴∠PAN=∠ANM,
由(1)知∠PNM=2∠CBN,
∴∠PAN=∠PNA,
∴AP=PN,
∵AB=CD=4,M,N分别为AB,CD的中点,
∴DN=2,
设AP=x,则PD=6﹣x,
在Rt△PDN中
PD2+DN2=PN2,
∴(6﹣x)2+22=x2,
解得:x=
所以AP=.
20.(1)证明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,

∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∵BC=2,
∴AC=2BC=4,
∴AB===6.