专题25.3 用频率估计概率-2020-2021数学九上册同步课堂帮帮帮(含解析)

文档属性

名称 专题25.3 用频率估计概率-2020-2021数学九上册同步课堂帮帮帮(含解析)
格式 doc
文件大小 2.1MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-10-30 11:50:18

图片预览

文档简介

中小学教育资源及组卷应用平台
第二十五章 概率初步
25.3 用频率估计概率
用频率估计概率
连续抛掷一枚质地均匀_?????????10???_、20次、30次、40次、50次……分别记录每轮试验中硬币“正面向上”和“反面向上”出现的次数,求出“正面向上”和“反面向上”的频率,分析数据,可探索出频率的变化规律.
帮—重点 用随机事件的频率估计事件发生的概率
帮—难点 体验当试验的所有可能结果不是有限个或不是等可能出现时,要用频率估计概率
帮—易错 不能正确理解概率与频率的关系
用频率估计概率
(1)从长期实践中,_??????è§??????°???_对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.
(2)一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生的概率P(A)=p.
一个不透明_?????????é?????n_个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为
A.0.3 B.0.7
C.0.4 D.0.6
【答案】A
【解析】∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,
∴估计摸到黄球的概率为0.3,故选A.
【名师点睛】一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么估计事件A发生的概率P(A)=p.试验得出的频率只是概率的估计值.概率是针对大量重复试验而言的,大量重复试验反映出的规律并非在每一次试验中都发生.
下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:
投篮次数(n) 50 100 150 209 250 300 500
投中次数(m) 28 60 78 104 124 153 252
投中频率() 0.56 0.60 0.52 0.52 0.49 ____ ____
(1)将表格补充完成;(精确到0.01)
(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?
(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?
【解析】(1)153÷300=0.51,252÷500≈0.50;
故答案为:0.51,0.50;
(2)估计这名同学投篮一次,投中的概率约是0.5;
(3)622×0.5=311(次).
所以估计这名同学投篮622次,投中的次数约是311次.
一、单选题
1.在一个不透明的盒子里,装_???4???é????????_若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )21·cn·jy·com
A.12个 B.16个 C.20个 D.30个
【答案】A
【解析】
∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球.
∴摸到黑球与摸到白球的次数之比为1:3.∴口袋中黑球和白球个数之比为1:3.
∴4×3=12(个).故选A.
考点:用样本估计总体.
2.在一个不透明的布袋中,红球_???é??????????????_共有若干个,除颜色外,形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,……,如此大量摸球实验后,小新发出其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%.对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率应稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的球是红球.其中说法正确的是( )【来源:21·世纪·教育·网】
A.①②③ B.①② C.①③ D.②③
【答案】B
【解析】
分析:根据大量重复实验时,事_????????????é?????_在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,分别分析得出即可:【出处:21教育名师】
∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,
∴①若进行大量摸球实验,摸出白球的频率稳定于:1-20%-50%=30%,故此选项正确.
∵摸出黑球的频率稳定于50%,大于其它频率,
∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确.
③若再摸球100次,不一定有20次摸出的是红球,故此选项错误.
故正确的有①②.故选B.
3.在课外实践活_??¨???????????????_、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
【答案】D
【解析】
试题分析:大量_????¤?è??é????????_某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故答案选D.
考点:事件概率的估计值.
二、填空题
4.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:
移植总数(n) 400 750 1500 3500 7000 9000 14000
成活数(m) 369 662 1335 3203 6335 8073 12628
成活的频率 0.923 0.883 0.890 0.915 0.905 0.897 0.902
根据表中数据,估计这种幼树移植成活率的概率为   (精确到0.1).
【答案】0.9
【解析】
【分析】
对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.
【详解】
∵,
∴这种幼树移植成活率的概率约为0.9.
故答案是:0.9
5.一个不透_?????????è??é??è??_有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述试验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球____________个.21世纪教育网版权所有
【答案】20
【解析】
【分析】
【详解】
∵摸到黄球的频率稳定在30%,
∴在大量重复上述实验下,可估计摸到黄球的概率为30%=0.3,而袋中黄球只有6个,
∴推算出袋中小球大约有6÷0.3=20(个),
故答案为20.
6.一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:
实验者 德·摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基
掷币次数 6140 4040 10000 36000 80640
出现“正面朝上”的次数 3109 2048 4979 18031 39699
频率 0.506 0.507 0.498 0.501 0.492
请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).
【答案】0.5
【解析】
【分析】
由于表中硬币出现“正面朝上”的频率在0.5左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率.21·世纪*教育网
【详解】
解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,
所以估计硬币出现“正面朝上”的概率为0.5.
故答案为0.5.
【点睛】本题考查_????????¨é???????°_计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.21教育名师原创作品
三、解答题
7.某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温有关,现将去年六月份(按30天计算)的有关情况统计如下:【来源:21cnj*y.co*m】
(最高气温与需求量统计表)
最高气温(单位:℃) 需求量(单位:杯)
200
250
400
(1)求去年六月份最高气温不低于30℃的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;2-1-c-n-j-y
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温满足(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?
【答案】(1)8天;(2);(3)730元.
【解析】
【分析】
(1)由条形图可得答案;
(2)用的天数除以总天数即可得;
(3)根据利润=销售额-成本计算可得.
【详解】
解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为(天);
(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为;
(3)(元),
答:估计这一天销售这种鲜奶所获得的利润为730元.
【点睛】本题主_è??è??????????¨é??_率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.21教育网
8.在学校组织的朗诵比赛中,甲、_?????¤????????????_抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.21*cnjy*com
【答案】.
【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.
试题解析:解:如图:
所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.
点睛:本题主要考查了用_???è?¨????????????_状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21*cnjy*com
9.小明和小军两人一起做游戏,游_???è§?????????????_每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.
【答案】.
【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率.试题解析:列表如下:
所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概率==.
考点:列表法与树状图法.
10.某公司其有名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.
频率分布表
组别 销售数量(件) 频数 频率
A


B


C


D


E


合计

请根据以上信息,解决下列问题:
(1)频数分布表中,________、________:
(2)补全频数分布直方图;
(3)如果该季度销量不低于件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.2·1·c·n·j·y
【答案】(1)0.26,50;(2)见解析;(3)估计该季度被评为“优秀员工”的人数为名.
【解析】
【分析】
(1)根据频率与频数之间的关系,求样本总数,再求.
(2)根据频率与频数之间的关系,求频数,补齐频数分布直方图.
(3)销量不低于件的销售人员个数即为 组和组频数之和.
【详解】
(1)根据频率与频数之间的关系,样本总数,=.
(2)=23,频数分布直方图如图所示:
(3)销量不低于件的销售人员个数即为 组和组频率之和为,则估计该季度被评为“优秀员工”的人数为(名).
【点睛】本题考查频数与频率的概念及计算公式.
一、单选题
1.某射击运动员在同一条件下的射击成绩记录如下:
射击次数 20 80 100 200 400 1000
“射中九环以上”的次数 18 68 82 168 327 823
“射中九环以上”的频率(结果保留两位小数) 0.90 0.85 0.82 0.84 0.82 0.82
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是(  )
A.0.90 B.0.82 C.0.85 D.0.8421cnjy.com
【答案】B
【解析】
【分析】
根据大量的实验结果稳定在0.82左右即可得出结论.
【详解】
解:∵从频率的波动情况可以发现频率稳定在0.82附近,
∴这名运动员射击一次时“射中九环以上”的概率是0.82.
故选:B.
【点睛】本题主要考查_???????????¨é?????_估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.www.21-cn-jy.com
2.一个不透明_?????????é?????n_个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
【答案】D
【解析】
【分析】
【详解】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
3.下列说法正确的是(   )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
【答案】D
【解析】
【分析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
二、填空题
4.如图,为测量平地上一块不规_??????????????????_的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m2.
【答案】1
【解析】
【分析】
【详解】
解:由题意可知,正方形的面积为4平方米,
因为小石子落在不规则区域的频率稳定在常数0.25附近,
所以不规则区域的面积约是4×0.25=1平方米.
故答案为:1
5.一个口袋中装有10_????????????è?????_个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有_______个黄球
【答案】15
【解析】
【分析】
【详解】
解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,
设黄球有x个,
∴0.4(x+10)=10,
解得x=15.
答:口袋中黄色球的个数很可能是15个.
6.如图,一只蚂蚁在正方形AB_CD????????????_行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为_____.
【答案】
【解析】
试题分析:∵四边形ABCD为正方形,点O是对角线的交点,
∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,
∵∠MON=90°,
∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,
∴∠MOB=∠NOC.
在△MOB和△NOC中,有,
∴△MOB≌△NOC(ASA).
同理可得:△AOM≌△BON.
∴S阴影=S△BOC=S正方形ABCD.
∴蚂蚁停留在阴影区域的概率P==.
考点:几何概率.
三、解答题
7.某小学学生较多,为了_?????????????°????_就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.www-2-1-cnjy-com
(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)
(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
【答案】(1)不可能事件;(2).
【解析】
【分析】
【详解】
试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
(2)树状图法
即小张同学得到猪肉包和油饼的概率为.
考点:列表法与树状图法.
8.今年5月,某大型商业集团随_?????????????±????_m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分) 评定等级 频数
90≤n≤100 A 2
80≤n<90 B
70≤n<80 C 15
n<70 D 6
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
【答案】(1)25;(2)8°48′;(3).
【解析】
试题分析:(1_?????±C?????§é??_数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
试题解析:(1)∵C等级频数为15,占60%,
∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
∴其中至少有一家是A等级的概率为:=.
考点:频数(率)分布表;扇形统计图;列表法与树状图法.
9.某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.
【答案】不赞同,.
【解析】
【分析】
首先记七、八年级两_????????????A???_B,九年级两名同学为C,D,然后根据题意画出树状图,由树状图求得所有等可能的结果与前两名是九年级同学的情况,再利用概率公式即可求得答案.
【详解】
解:不赞成小蒙同学的观点.
记七、八年级两名同学为A,B,九年级两名同学为C,D.
画树形图分析如下:
由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为.
10.2010年5月_1?????????41_届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?
【答案】(1)50(2)15(3)144°(4)
【解析】
【分析】
(1)根据A是5人,占总体的10%,即可求得总人数;
(2)根据总人数和B所占的百分比是30%求解,然后补充图形;
(3)首先计算C所占的百分比,再进一步求得其所对的圆心角的度数;
(4)只需用D的人数除以总人数,求得所占的比例即可.
【详解】
解:(1)5÷10%=50(人)
(2) 50×30%=15(人)
(3)360°×=144°
(4).
考点:数据分析(统计图,概率)
一、单选题
1.(2016·_??????é??????·???_考真题)在一个密闭不透明的袋子里有若干个白球.为估计白球个数,小何向其中投入8个黑球,搅拌均匀后随机摸出一个球,记下颜色,再把它放入袋中,不断重复摸球400次,其中88次摸到黑球,则估计袋中大约有白球(  )【版权所有:21教育】
A.18个 B.28个 C.36个 D.42个
【答案】B
【解析】
试题分析:根据摸到黑球的概率和黑球的个数,可以求出袋中放入黑球后总的个数,然后再减去黑球个数,即可得到白球的个数.
由题意可得,
白球的个数大约为:8÷﹣8≈28,
故选B.
考点:用样本估计总体.
2.(2018·广西柳州·中考真题)现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为  
A.1 B. C. D.
【答案】B
【解析】
【分析】
利用概率公式计算即可得.
【详解】
∵从4张纸牌中任意取一张有4种等可能的结果,其中抽到红桃A的只有1种结果,
∴抽到红桃A的概率为
故选:B.
【点睛】本题考查的知识点是概率公式,解题关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数+所有可能出现的结果数.
3.(2017·湖北恩施·中考真题)小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. B. C. D.
【答案】D
【解析】
试题分析:设小明为A,爸爸为B,妈妈为C,则所有的等可能结果是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),所以他的爸爸妈妈相邻的概率是,故选D.
考点:用列举法求概率.
二、填空题
4.(2020·湖北宜昌·_???è?????é????????_术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
【答案】0.99
【解析】
【分析】
根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.
【详解】
解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.
故答案为0.99.
【点睛】本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.
5.(2020·甘肃_é??????·???è?????_题)在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.
【答案】17
【解析】
【分析】
根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.
【详解】
解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,
∵假设有x个红球,
∴=0.85,
解得:x=17,
经检验x=17是分式方程的解,
∴口袋中有红球约有17个.
故答案为:17.
【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.
6.(2019·广东中考真题_?????°???8??????_样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是_______.
【答案】
【解析】
【分析】
直接利用概率公式计算进而得出答案.
【详解】
∵现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,
∴将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽出一张,抽到标有数字2的卡片的概率是:.
故答案为:.
【点睛】此题主要考查了概率公式,正确掌握计算公式是解题关键.
三、解答题
7.(2020·江苏泰州·中考真题)一只不透明袋子中装有个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:
(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______(精确到),由此估出红球有______个.
(2)现从该袋中摸出个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到个白球,个红球的概率.
【答案】(1)0.33,2;(2).
【解析】
【分析】
(1)通过表格中的数据_???é??????????°???_增多,摸到白球的频率越稳定在0.33左右,进而得出答案;利用频率估计概率,摸到白球的概率0.33,利用概率的计算公式即可得出红球的个数;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到一个白球一个红球的情况,再利用概率公式即可求得答案.
【详解】
解:(1)随着摸球次数的越来越多,频率越来越靠近0.33,因此接近的常数就是0.33;
设红球由个,由题意得:
,解得:,经检验:是分式方程的解;
故答案为:0.33,2;
(2)画树状图得:
∵共有9种等可能的结果,摸到一个白球,一个红球有4种情况,
∴摸到一个白球一个红球的概率为:;
故答案为:.
【点睛】本题考查了利用频率_??°è??????????????_法,理解频率、概率的意义以及频率估计概率的方法是解决问题的关键;还考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求出事件A的概率.
8.(2020·重庆中考真题)_?????????4???1_5日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:
八年级抽取的学生的竞赛成绩:
 4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.
根据以上信息,解答下列问题:
(1)填空:a=_____,b=____,c=____.
(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;
(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.
【答案】(1)7.5,8,8;(2)200人;(3)八年级的学生成绩更优异.
【解析】
【分析】
(1)由图表可求解;
(2)利用样本估计总体思想求解可得;
(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.
【详解】
解:(1)由图表可得:,,,
故答案为:7.5,8,8;
(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为:(人,
答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;
(3)八年级的合格率高于七年级的合格率,
八年级“国家安全法”知识竞赛的学生成绩更优异.
【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.
9.(2019·_?????????????·???_考真题)一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其它完全相同.
(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是__________.
(2)小聪先从袋子中随机摸出一个小球,记下数字作为点的纵坐标,如图,已知四边形的四个顶点的坐标分别为,,,,请用画树状图或列表法,求点落在四边形所围成的部分内(含边界)的概率.
【答案】(1);(2).
【解析】
【分析】
(1)直接利用概率公式计算可得;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
【详解】
(1)在,,0,1中正数有1个,
∴摸出的球上面标的数字为正数的概率是,
故答案为:;
(2)列表如下:


0 1








0



1



由表知,共有16种等可能结果,其中点落在四边形所围成的部分内(含边界)的有:
、、、、、、、这8个,
所以点落在四边形所围成的部分内(含边界)的概率为.
【点睛】本题考_???????????¨???è?¨_法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
10.(2016_?·é????·è??????·_中考真题)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)2015_????????????é?????_西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;
(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?
(3)甲乙两个旅行团在青海湖、_????°?????????????_城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.
【答案】(1)50;108°;图形见解析;(2)9.6万;(3)
【解析】
试题分析:(1)根据条形图和扇形_????????°??????é??_海湖”的人数和所占的百分比,计算出共接待游客人数,根据“青海湖”所占的百分比求出圆心角,求出塔尔寺人数,补全条形统计图;(2)求出选择西宁周边游所占的百分比,计算即可;(3)列表求出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.
试题解析:(1)由条形图和扇形图可知,游“青海湖”的人数是15万人,占30%,
∴共接待游客人数为:15÷30%=50(万人),
“青海湖”所对应的圆心角的度数是:360°×30%=108°,
塔尔寺人数为:24%×50=12(万人),补全条形统计图如图:
(2)(万人)
答:估计将有9.6万人会选择去贵德旅游;
(3)设A,B,C分别表示青海湖、塔尔寺、原子城.
由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个
景点的结果有3种. ∴同时选择去同一个景点的概率是.
考点:(1)列表法与树状图法;(2)用样本估计总体;(3)扇形统计图;(4)条形统计图.
_21?????????è?????(www.21cnjy.com)_