人教版八年级数学上册14.2 乘法公式 同步练习(Word版 含答案)

文档属性

名称 人教版八年级数学上册14.2 乘法公式 同步练习(Word版 含答案)
格式 doc
文件大小 86.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-11-02 21:07:02

图片预览

文档简介

14.2 乘法公式
一.选择题
1.已知,则的值为(  )
A. B. C. D.或1
2.若a、b是正数,a﹣b=1,ab=2,则a+b=(  )
A.﹣3 B.3 C.±3 D.9
3.若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是(  )
A.x+y+z=0 B.x+y﹣2z=0 C.y+z﹣2x=0 D.z+x﹣2y=0
4.下列运算正确的是(  )
A.(x﹣y)2=x2﹣y2 B.x3?x2=x6
C.a6÷a3=a3 D.(x2)3=x5
5.若a+b=3,则2a2+4ab+2b2﹣6的值是(  )
A.12 B.6 C.3 D.0
6.有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为(  )
A.a+b B.2a+b C.3a+b D.a+2b
7.下列各式,能用平方差公式计算的是(  )
A.(x+2y)(2x﹣y) B.(x+y)(x﹣2y)
C.(x+2y)(2y﹣x) D.(x﹣2y)(2y﹣x)
8.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如28=82﹣62,故28是一个“智慧数”.下列各数中,不是“智慧数”的是(  )
A.987 B.988 C.30 D.32
9.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是(  )
A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2 D.(a+2b)(a﹣b)=a2+ab+b2
10.如图,在边长为a的正方形上剪去一个边长为b的小正方形(a>b),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是(  )
A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2 D.a2﹣ab=a(a﹣b)
二.填空题
11.若m1,m2,…m2019是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为   .
12.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片   张才能用它们拼成一个新的正方形.
13.将多项式x2+4加上一个整式,使它成为完全平方式,试写出满足上述条件的三个整式:
   ,   ,   .
14.观察下列各式:
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1,
根据前面各式的规律可得(x﹣1)(xn+xn﹣1+…+x+1)=   (其中n为正整数).
15.如图两幅图中,阴影部分的面积相等,则该图可验证的一个初中数学公式为   .
三.解答题(共5小题)
16.认真阅读材料,然后回答问题:
我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…
下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:
上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:
(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;
(2)请你预测一下多项式(a+b)n展开式的各项系数之和.
(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).
17.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.
例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少两种形式);
(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.
18.如果一个正方形的边长增加2cm,它的面积就增加24cm2,求原正方形的边长.
19.一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式,比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2
(1)图③可以解释为等式:   .
(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示的   块,   块,   块.
(3).如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个小长方形的两边长(x>y),观察图案,以下关系式正确的是   (填序号).
①xy=②x+y=m③x2﹣y2=m?n④x2+y2=

参考答案
一.选择题
1. B.
2. B.
3. D.
4. C.
5. A.
6. D.
7. C.
8. C.
9. A.
10. A.
二.填空题
11. 510.
12. 4.
13.±4x;x4.
14. xn+1﹣1.
15.a2﹣b2=(a+b)(a﹣b).
三.解答题
16.解:(1)∵当n=1时,多项式(a+b)1的展开式是一次二项式,此时第三项的系数为:0=,
当n=2时,多项式(a+b)2的展开式是二次三项式,此时第三项的系数为:1=,
当n=3时,多项式(a+b)3的展开式是三次四项式,此时第三项的系数为:3=,
当n=4时,多项式(a+b)4的展开式是四次五项式,此时第三项的系数为:6=,

∴多项式(a+b)n的展开式是一个n次n+1项式,第三项的系数为:;
(2)预测一下多项式(a+b)n展开式的各项系数之和为:2n;
(3)∵当n=1时,多项式(a+b)1展开式的各项系数之和为:1+1=2=21,
当n=2时,多项式(a+b)2展开式的各项系数之和为:1+2+1=4=22,
当n=3时,多项式(a+b)3展开式的各项系数之和为:1+3+3+1=8=23,
当n=4时,多项式(a+b)4展开式的各项系数之和为:1+4+6+4+1=16=24,

∴多项式(a+b)n展开式的各项系数之和:S=2n.
17.解:(1)x2﹣4x+2的三种配方分别为:
x2﹣4x+2=(x﹣2)2﹣2,
x2﹣4x+2=(x+)2﹣(2+4)x,
x2﹣4x+2=(x﹣)2﹣x2;
(2)a2+ab+b2=(a+b)2﹣ab,
a2+ab+b2=(a+b)2+b2;
(3)a2+b2+c2﹣ab﹣3b﹣2c+4,
=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),
=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),
=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,
从而有a﹣b=0,b﹣2=0,c﹣1=0,
即a=1,b=2,c=1,
∴a+b+c=4.
18.解:设原正方形的边长为xcm,
(x+2)2﹣x2=24,
解得:x=5.
答:原正方形的边长为5cm.
19.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2
故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.
(2)(a+3b)(2a+b)=2a2+7ab+3b2
故答案为:2;7;3.
(3)∵m2﹣n2=4xy
∴①正确;
∵x+y=m
∴②正确;
∵x+y=m,x﹣y=n
∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,故③正确;
∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2)
∴④正确.
故答案为:①②③④.