《分段计费问题》教学设计
学情分析
本堂课是解决“分段计费”的实际问题。虽然这类题有一定的难度,但学生已具备一定的生活经验的,日常生活中“水费、电费、话费、车费”等很多实例学生们都有所接触。同时这类题与我们的生活有着密切的联系,是学后能有所用的知识,学生还是有一定的探究欲望的。
教学目标
知识与技能
1、通过现实生活中出租车费计费特点理解“分段计费”的含义,学会用“分段计算”和“先假设再调整”的方法解决“分段计费”的实际问题。
2、通过回顾与反思引导学生建立解决这类问题的一般方法,提升学生解决问题的能力。
过程与方法
1、让学生经历解决问题的过程,在学生已有经验的基础上,紧密结合情境,数形结合帮助学生理解题意。
2、通过分析,启发学生用不同的思路与方法解决问题。
3、通过回顾与反思引导学生建立解决这类问题的一般方法。积累解决问题的经验。
情感态度与价值观
感受数学的应用价值,提高学习数学的兴趣,增强学好数学的信心。
教学重难点
教学重点:理解“分段计费”的含义;掌握解决“分段计费”问题的两种计算方法。
教学难点:对“先假设再调整“的计算方法的理解及灵活运用。
教学准备
ppt课件
教学过程
一、创设情境,导入新课。
教师:同学们都坐过出租车吗?你有没有注意到出租车是怎样计费的呢?(让学生说一说)
。
【设计理念】:重视学生已有的经验,让学生从实际生活中发现数学问题,体验数学的价值。
二、合作交流,探索新知
师:有个王叔叔坐出租车,出租车师傅问他要20元车费,这个王叔叔觉得出租车师傅问他要多了,但他又没读过书,不会算,我们同学们能帮帮他吗?
1、出示例题,理解题意。
3 km以内7元;超过3 km,每千米1.5元(不足1 km按1 km计算)。行驶6.3千米要付多少钱?
收费标准:3 km以内7元;超过3 km,每千米1.5元(不足1 km按1 km计算)。
一条横轴表示出租车行驶的里程数,再画一条纵轴表示坐车所付的费用。“3 km以内7元”是什么意思呢?(学生说自己理解的意思。)
师:(动态演示)非常好,比如行驶1千米要付几元?行驶2千米呢?行驶2.7千米呢?3千米之内7元包括3千米吗?(学生思考回答)
师:也就是说从起步开始,只要不超出3千米就付7元。
师:如果行驶4千米又要付多少钱呢?为什么? 5千米呢?
(学生思考回答)
题目中的乘客坐了6.3 km的路程,又该按多少千米来付费呢?(学生思考回答)
教师:真棒!不足1 km按1 km计算,也就是说我们要采用“进一法”取“整千米”数。
师:什么是分段计费呢?为了便于同学们理解,老师特意制定了一段微课视频,(出示微课视频)
师:同学们已经理解了题意,现在先独立尝试解决问题,再在小组内交流,说说你是怎样解决这个问题的。最后总结一下计算总价的公式是怎样的?
列式计算。(学生先独立思考,列出算式并算出结果,然后在小组内交流, 教师巡视辅导,指名学生上台板书,并请学生说说自己的算法。教师根据学生的回答板书。)
解法一:分段计算
3千米以内的费用: 7元
超出3千米的费用: 1.5×(7-3)=6(元)
总共要付的费用: 7+1.5×(7-3)
=7+1.5×4
=7+6
=13(元)
答:这位乘客应付车费13元。
(着重让学生说说每步算式的意义)
师总结:所付的费用=前段的费用+后段的费用。我们把这种算法称作“分段计算”(板书)
现在我们让这位同学总结一下公式好吗?
生:总价=起步价+单价×(总路程-起步路程)
师:我们来验证一下这位同学做对了吗。(看课件画线段图演示过程)看来这位同学计算的是正确的。
师:同学们用“分段计算”的方法解决了乘客问题,还有没有其他方法呢?(学生思考)
师:我们能不能全程都按1.5元算呢?(学生思考,预设学生回答可能行,可能不行。)
师:为什么不行?(根据学生的回答演示图像,)
师:假设全程都按1.5元/km来算,7千米就收10.5元,比原来少了2.5元。请同学们用敏锐的目光观察图像,到底哪个地方出现问题了?(学生通过对比两个图像找到问题根源:收费标准3千米以内收7元,如果按1.5元/km来算,前3千米只收4.5元,少收了2.5元)
师:少收了怎么办?
根据学生的回答板书:
假设:1.5×7=10.5(元)
少算:7-1.5×3=2.5(元)
调整:10.5+2.5=13(元)
答:这位乘客应付车费13元。
师:我们把这种方法叫做:“先假设再调整”.(板书 解法二:先假设,再调整 )同学们能理解这个解题方法吗?
你们觉得哪种方法容易些,喜欢用哪种方法?学生:第一种,
师:你觉得哪种方法容易,以后你就用哪种方法做.
【设计理念】引导学生收集、整理信息,老师根据信息逐步画出“函数图像”,数形结合,使学生理解“分段计费”的意思。通过分析让学生能够运用“分段计算”方法解决问题。通过验证把“函数图像”补充完整,引导学生观察“函数图像”,思考出租车费与行使里程数之间的联系及变化情况。通过两个图像之间的对比讲授“先假设再调整”的方法。让学生找到知识间的联系及问题根源:问题出现在前3千米以内的收费上面。如果按1.5元/km来算,前3千米只收4.5元,少收了2.5元,少收了要加上。这样能更直观的理解、分析题意。
师:那全国各地的出租车收费是一样的吗?是的,是不同的,下面我以三个城市为例,来看看收费标准是怎样的?(出示课件).
师:各个城市的收费标准,国家是有规定的,一般来说,城市越大,起步的里程越大,起步价也越贵,各个城市的出租车计费标准是根据那个城市的面积大小,以及经济发展情况来制定,出租车师傅必须按规定收费,如果乱收费的话,我们是可以举报他的.那这位出租车师傅问王师傅要20元,是多收了,还是少收了,生:多收了,刚才我们上课的过程,王叔叔听得可认真了,他对同学们说:非常感谢热心的孩子们,他给了司机13元,司机低着头不好意思的收下了,王叔叔完全可以举报他,但想到出租车师傅也要养家糊口,也不容易,也就算了,这说明王叔叔是个非常善良的人.
三、巩固练习。
师:除了出租车费是分段计费的,生活中的哪些费用也是分段计费的呢?
生:水费,电费,电话费.
分段计费新问题
出租汽车3千米起步价10元,行驶3千米后,每千米收费1.2元(不足1千米按1千米计算)。小明从家要乘出租车到奶奶家,下车后共付车费22元,小明家距离奶奶家有多少千米?
师:我们先来分析是题意.
师:这题与例题有什么不同?
生:例题是求总价,这道题是求总路程.
2、出示练习题,学生读题、理解题意、独立解答。
某市电力公司为鼓励节约用电,采取按月分段计费的方法收取电费。50度以内的每度电价0.52元,超过50度的部分每度按0.62元计费。
小可家上个月的用电量为160度,应缴电费多少元?
汇报解答结果,全班交流,分享思路,对比思考。
师:回顾用“分段计算”方法解决问题的过程,你发现了什么规律?
根据学生的回答小结:应付费用=前段费用+后段费用
3、下面我们来看这道题的分段计费与上面几道题还是一样的吗?
何老师早上8时把车停在人民医院,下班后下午5时去取车,
请问:何老师付了多少元停车费?
溆浦县人民医院停车场收费,具体如下:
(1)、3小时内免费停放;
(2)、停车3-5小时以内,每次5元;
(3)、停车5-10小时,每次10元;
(4)、停车10小时以上,每次15元;
(5)、全天24小时最高限每车20元。
4、拓展延伸:
根据《中华人民共和国个人所得税》规定,公民应根据个人收入按规定纳税。收入3500元以下的(含3500元)不纳税,凡超过3500元,其超过部分应按下表纳税:
级数 全月应纳税所得额 税率(%)
1 不超过1500元 3
2 超过1500至4500元的部分 10
…… …… ……
陈芳的爸爸是一位部门主管,他一月份的收入是6000元,
他应该交税多少元?
【设计理念】由于学生的能力不同,开始设计的练习是基本练习。目的是让学生能巩固这类题的解题方法。而后面的练习题是有深度的。通过再次的回顾与反思,引导学生建立解决这类问题的一般方法。积累解决问题的经验,进一步提升学生解决问题的能力。
四、课堂总结,梳理知识点。
师:同学们,通过这节课的学习你有什么收获?(学生谈收获)
根据学生的发言总结:通过刚才的学习,我们发现了“分段计费”问题蕴含的规律,找到了解决“分段计费”问题的两种一般方法,一种是“分段计算”,另一种是“先假设再调整”。同学们学得很好。
【设计理念】:通过总结梳理知识、内化知识。积累解决问题的经验,进一步提升学生解决问题的能力。
五、板书:
分段计费问题
一、总价=起步价+单价×(总路程-起步路程)
二、先假设再调整