对数函数及其性质第一课时教学设计

文档属性

名称 对数函数及其性质第一课时教学设计
格式 zip
文件大小 28.5KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2011-10-17 16:27:34

图片预览

文档简介

对数函数及其性质(第一课时)
榆次晋华中学 卜晓林
☆指导思想与理论依据
以素质教育理论为指导,体现新课标 “学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。以问题引导数学活动,培养学生的问题意识,孕育创新精神。
☆教材分析
“对数函数”的内容出现在人教版必修一第二章,它是在学过对数与常用对数,以及指数函数的基础上,以类比的方法进行学习,这有利于学生加深和巩固对函数和指数函数的认识与函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例(统计、规划等)有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。本节内容安排两课时,第一课时是 理解对数函数的意义及图像与性质的掌握;第二课时是对数函数图像、性质的应用,本节课是第一课时。
☆学情分析
对数函数是学生升入高中以后继指数函数之后必须掌握的的又一初等函数模型,它在我们的现实生活中有着重要的作用。
我校是一所普通中学,大部分学生数学基础较差,表现在理解能力,运算能力,思维能力等方面较差,学习缺乏主动性,其中有一部分学生对学好数学的信心不足,有畏难情绪;也有一部分同学学习数学的热情很高,希望在数学方面有突出表现。
结合本校特点,我们采用了集体备课,然后各自补充的方式进行教学。
☆ 教学目标
1、知识与技能:
(1)理解对数函数的定义;掌握对数函数的图象和性质及其简单应用。
(2)通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的函数图像的画法以及类比法逐步认识对数函数的特征;
2、过程与方法:
(1)通过实例创设问题情境,引导学生对对数函数解析式的理解;引导学生类比指数函数的研究思路,从图像特征分析对数函数的性质。提高学生类比归纳和数形结合的能力。
(2)采用讨论的方法,调动学生参与的积极性,突出学生主体地位,通过教师必要指导,调动学生思维的积极性;提高学生分析问题、解决问题的能力。
3、情感态度与价值观:
(1)渗透由特殊到一般的思想,培养学生探索研究数学问题的素养。
(2)通过学习对数函数与指数函数的图像特征和性质,让学生欣赏它们各具特点的位置关系,感悟数学世界的奇异美,培养学生的美学意识。
(3)通过本节内容学习,培养学生不断探索发现新知的精神,渗透事物的相互转化和理论联系实际的辩证唯物主义观点。
☆教学重点和难点
重点:理解并掌握对数函数的定义、图像与性质。
难点:对数函数的图像和性质的探究。
☆教学流程示意
从对数函数的实际背景引入课题
构建对数函数的概念
画对数函数的图象
探索对数函数的性质
课堂小结与作业
☆ 教学过程设计
教学环节 教师活动 预设学生行为 设计意图
课题引入 提出问题:课本2.2.1例6,考古学家通过提取附着在出土文物、古遗址上死亡生物体的残留物,利用碳14含量 估算出土文物或古遗址的年代,那么,该对应关系能否构成函数? 组织学生思考、讨论所提出的问题,引导学生从函数定义出发解释实际问题中变量之间的关系。 分析数据,体会时间与碳14含量之间的关系 思考、讨论后推举代表回答问题。 实际问题激发兴趣 为引出对数函数概念作准备
对数函数的概念 提出问题:在对数函数的定义中,为什么要限定a>0且a≠1为什么对数函数注意:对数函数是形式定义,注意辨别形如的函数是不是对数函数 思考,分组交流探求问题答案 对定义有深刻理解
对数函数的图象 问题引出:你能类比前面讨论指数函数的思路,提出研究对数函数的方法吗?教师引导学生回顾指数函数的一些性质 问题:在同一平面坐标系中画出函数 和 的图象? 独立画图观察图象总结规律互相交流小组展示 让学生能明确函数图象在研究函数性质中的作用,注意从特殊到一般和数形结合思想方法的应用,渗透概括能力的培养。
对数函数的性质 问题:你能利用对数函数的图象归纳出对数函数性质吗? 通过上述探究活动,观察图象,得出性质,相互交流,形成对对数函数性质的认识。最后各组代表发表意见。完成课本上的表格(见附录1) 进一步培养归纳概括的能力,养成数形结合分析问题的习惯
性质应用 例1:(见附录2)例2:问题:你能根据对数函数的定义及性质解决课本练习3吗?课堂巡视,个别辅导,针对学生的共同问题集中解决。 独立思考,尝试解决课本练习,并且小组讨论,交流 通过应用,动手解决问题,发现问题借助对数函数定义及性质的运用,加深学生对所学知识的理解。
归纳小结 引导学生巩固小结1.对数函数的定义2.对数函数的图象与性质3.在理解对数函数定义的基础一,掌握对数函数的图象与性质是本节重点
作业 习题2. 2 81页练习2题,A组第7、8题
☆板书设计
2.2.2 对数函数及其性质(第一课时)一、课题引入 三、作出 和 五、练习展示二、对数函数的概念 的图象 六、归纳小结1.定义 2.注意问题 四、对数函数的图象与性质
附录1:给出对数函数y=logax(a>0且a≠1)的图象和性质。
图象
定义域
值域 R
过定点(1,0)
在上为增函数当当 当在上为减函数当当
附录2:
例1、求下列函数的定义域:。
(1)  
(2)
例2、比较下列各组数中两个值的大小。
① 
② 

④ 
附录3
练习:P81 3 比较下列各题中的两个值的大小。
 
 
 
 
1
x
yu
O
1
x
yu
O