(共10张PPT)
15.1.1 整式
沙市实验中学数学组
提出问题,创设情境
在七年级,我们已经学习了用字母可以表示数,思考下列问题
1.要表示△ABC的周长需要什么条件?要表示它的面积呢?
2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?
结论 1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.
如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为s=
·c·h.
问题:这些式子有什么特征呢?
(1)有数字、有表示数字的字母.
(2)数字与字母、字母与字母之间还有运算符号连接.
归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式
判断上面得到的三个式子:a+b+c、ch、 是不是代数式?
代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.
思考:
先填空,再看看列出的代数式有什么特点.
(1)边长为x的正方形的周长为_________;
(2)一辆汽车的速度是v千米/时,行驶t小时所走过的路程为_______千米.
(3)如图,正方体的表面积为_______,正方体的体积为________;
(4)设n表示一个数,则它的相反数是________.
结论
:(1)正方形的周长:4x.
(2)汽车走过的路程:vt.
(3)正方体有六个面,每个面都是正方形, 这六个正方形全等,所以它的表面积为6 ;正方体的体积为长×宽×高,
即
(4)n的相反数是-n.
几个单项式的和叫做多项式.
多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项.
多项式中次数最高的项的次数即这个多项式的次数.
根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12 、 +2x+18都是多项式.请分别指出它们的项和次数.
a+b+c的项分别是a、b、c.
t-5的项分别是t、-5,其中-5是常数项.
3x+5y+2z的项分别是3x、5y、2z.
ab-3.12 的项分别是ab、-3.12 .
+2x+18的项分别是 、 2x、18.
找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.
这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的魅力所在.我们把单项式与多项式统称为整式.
小结
随堂练习
1.课本P162练习
课时小结
通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.
课后作业
1.课本P165~P166习题15.1─1、5、8、9题.
2.预习“整式的加减”.
课后作业:《课堂感悟与探究》