人教版数学九年级上册25.2用列举法求概率课件(共29张PPT)

文档属性

名称 人教版数学九年级上册25.2用列举法求概率课件(共29张PPT)
格式 pptx
文件大小 911.3KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-11-08 09:35:29

图片预览

文档简介

25.2 用列举法求概率
复习引入
必然事件;
在一定条件下必然发生的事件,
不可能事件;
在一定条件下不可能发生的事件
随机事件;
在一定条件下可能发生也可能不发生的事件,
概率的定义
事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A).
0≤P(A) ≤1.
必然事件的概率是1,不可能事件的概率是0.
等可能性事件
问题1.掷一枚硬币,落地后会出现几种结果?
。正面、反面向上2种,可能性相等
问题2.抛掷一个骰子,它落地时向上的数有几种可能?
6种等可能的结果
问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取一根,抽出的签上的标号有几种可能?
5种等可能的结果。
1.可能出现的结果只有有限多个;
2.各种结果出现的可能性相等;
可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来分析求解的方法.
  例1 同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:
  (1)两枚硬币全部正面向上;
  (2)两枚硬币全部反面向上;
  (3)一枚硬币正面向上、一枚硬币反面向上.
探究新知
  方法一:将两枚硬币分别记做 A、B,于是可以直
接列举得到:(A正,B正),(A正,B反), (A反,B正), (A反,B反)四种等可能的结果.故:
探究新知
  P(两枚正面向上)= .
  P(两枚反面向上)= .
  P(一枚正面向上,一枚反面向上)= .
  方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况.
探究新知
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成相等的三个扇形).
游戏规则是:
如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.
驶向胜利的彼岸
1
2
3
思考:
解:每次游戏时,所有可能出现的结果如下:
总共有6种结果,每种结果出现的可能性相同,而所摸球上的数字与转盘转出的数字之和为2的结果只有一种:(1,1),因此游戏者获胜的概率为1/6.
转盘
摸球
1
1
2
(1,1)
(1,2)
2
(2,1)
(2,2)
3
(1,3)
(2,3)
1
2
3
例、同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子点数之和是9
(3)至少有一个骰子的点数为2
问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?
  解:两枚骰子分别记为第 1 枚和第 2 枚,可以用下
表列举出所有可能的结果.
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
第1枚
第2枚
  可以看出,同时掷两枚骰子,可能出现的结果有 36
种,并且它们出现的可能性相等.
运用新知
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
第1枚
第2枚
运用新知
  (1)两枚骰子点数相同(记为事件 A)的结果有 6
种,即(1,1),(2,2),(3,3),(4,4),
(5,5),(6,6),所以,P(A)=  = .
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
第1枚
第2枚
运用新知
  (2)两枚骰子点数之和是 9(记为事件 B)的结果
有 4 种,即(3,6),(4,5),(5,4),(6,3),
所以, P(B)=  = .
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
第1枚
第2枚
运用新知
  (3)至少有一枚骰子的点数是 2(记为事件 C)的
结果有 11 种,所以, P(C)=
思考
如果我的手边只有一枚骰子,那么可以解决这个问题吗?
“同时掷两个质地相同的骰子”
两个骰子各出现的点数为1~6点
“把一个骰子掷两次”
两次骰子各出现的点数仍为1~6点
归纳
“两个相同的随机事件同时发生”与
“一个随机事件先后两次发生”的结果是一样的。
随机事件“同时”与“先后”的关系:
这个游戏对小亮和小明公平吗?

小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗?
思考:
你能求出小亮得分的概率吗?
1
2
3
4
5
6
1
2
3
4
5
6
红桃
黑桃
用表格表示
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
(5,6)
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
总结经验:
当一次试验要涉及两个因素,并且可能出
现的结果数目较多时,为了不重不漏的列
出所有可能的结果,通常采用列表的办法
解:由表中可以看出,在两堆牌中分别取一张,它可
能出现的结果有36个,它们出现的可能性相等
满足两张牌的数字之积为奇数(记为事件A)
的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)
这9种情况,所以

P(A)=
要“玩”出水平
“配紫色”游戏
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.
游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用列表的方法表示游戏者所有可能出现的结果.
(2)游戏者获胜的概率是多少?




绿
A盘
B盘
真知灼见源于实践
表格可以是:
“配紫色”游戏
游戏者获胜的概率是1/6.
第二个
转盘
第一个
转盘


绿

(红,黄)
(红,蓝)
(红,绿)

(白,黄)
(白,蓝)
(白,绿)
●达标检测 反思目标
1、一个袋子中装有2个红球和2个绿球,任意摸出一球,记录颜色放回,再任意摸出一球,记录颜色放回,请你估计两次都摸到红球的概率是________。
2、某人有红、白、蓝三件衬衫和红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,求正好是一套白色的概率_________。
C
随堂练习
(基础练习)
在6张卡片上分别写有1—6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?
解:将两次抽取卡片记为第1个和第2个,用表格列出所有可能出现的情况,如图所示,共有36种情况。
则将第1个数字能整除第2个数字事件记为事件A,满足情况的有(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),
(4,4),(5,1),(5,5),(6,1)(6,2),(6,3),(6,6)。
●总结梳理 内化目标
1.在一次试验中,当可能出现的结果只有有限个,且各种结果出现的可能性大小相等时,我们可以用列举试验结果的方法,求出随机事件发生的概率.
2.通过概率的计算,我们可以科学地分析随机事件发生的结果的各种可能性,从而指导我们做事,提高做事的成功率.
  (1)用列举法求概率应该注意哪些问题?
  (2)列表法适用于解决哪类概率求解问题?使用
列表法有哪些注意事项?
课堂小结
  教科书 138 页 练习.
布置作业
谢谢!再见