第二十四章圆【真题训练】(原卷+解析)-2020-2021数学九下单元复习一遍过(沪科版)

文档属性

名称 第二十四章圆【真题训练】(原卷+解析)-2020-2021数学九下单元复习一遍过(沪科版)
格式 zip
文件大小 3.8MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2020-11-12 06:01:51

文档简介

中小学教育资源及组卷应用平台
第二十四章
圆【真题训练】
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是(

A.
B.
C.
D.
【答案】A
【解析】
试题分析:A、最小旋转角度==120°;
B、最小旋转角度==90°;
C、最小旋转角度==180°;
D、最小旋转角度==72°;
综上可得:顺时针旋转120°后,能与原图形完全重合的是A.
故选A.
考点:旋转对称图形.
2.如图⊙O的直径垂直于弦,垂足是,,,的长为(

A.
B.4
C.
D.8
【答案】C
【解析】
【详解】
∵直径AB垂直于弦CD,
∴CE=DE=CD,
∵∠A=22.5°,
∴∠BOC=45°,
∴OE=CE,
设OE=CE=x,
∵OC=4,
∴x2+x2=16,
解得:x=2,
即:CE=2,
∴CD=4,
故选C.
3.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是(

A.勾股定理
B.直径所对的圆周角是直角
C.勾股定理的逆定理
D.90°的圆周角所对的弦是直径
【答案】B
【解析】
【分析】
由作图痕迹可以看出AB是直径,∠ACB是直径所对的圆周角,即可作出判断.
【详解】
由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径花弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.
故选B.
【点评】本题主要考查了尺规作图以及圆周角定理的推论,能够看懂作图过程是解决问题的关键.
4.如图,在⊙O中,,∠AOB=50°,则∠ADC的度数是(??

A.50°
B.40°
C.30°
D.25°
【答案】D
【解析】
【分析】
【详解】
解:∵在⊙O中,,
∴∠AOC=∠AOB,
∵∠AOB=50°,
∴∠AOC=50°,
∴∠ADC=∠AOC=25°,
故选D.
【点评】本题考查圆周角定理及垂径定理,难度不大.
5.如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是(

A.为等腰三角形
B.与相互垂直平分
C.点A、B都在以为直径的圆上
D.为的边上的中线
【答案】B
【解析】
【分析】
连接OB,OC,令M为OP中点,连接MA,MB,证明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出为等腰三角形,可判断A;根据△OBP与△OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明△OBC≌△OAC,可得PC⊥AB,根据△BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案.
【详解】
解:连接OB,OC,令M为OP中点,连接MA,MB,
∵B,C为切点,
∴∠OBP=∠OAP=90°,
∵OA=OB,OP=OP,
∴Rt△OPB≌Rt△OPA,
∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,
∴为等腰三角形,故A正确;
∵△OBP与△OAP为直角三角形,OP为斜边,
∴PM=OM=BM=AM
∴点A、B都在以为直径的圆上,故C正确;
∵∠BOC=∠AOC,OB=OA,OC=OC,
∴△OBC≌△OAC,
∴∠OCB=∠OCA=90°,
∴PC⊥AB,
∵△BPA为等腰三角形,
∴为的边上的中线,故D正确;
无法证明与相互垂直平分,
故选:B.
【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键.
6.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为(

A.2cm
B.cm
C.
D.
【答案】C
【解析】
试题分析:先过点O作OD⊥AB,垂足为D,连接OA,由题意求得OD=OB=1cm,由勾股定理求得AD=cm,再由垂径定理求得AB=2cm.
故选C
考点:勾股定理,垂径定理
7.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是(  )
A.
B.
C.
D.
【答案】D
【解析】
【分析】
根据中心对称的定义,结合所给图形即可作出判断.
【详解】
A、不是中心对称图形,故本选项不符合题意;
B、不是中心对称图形,故本选项不符合题意;
C、不是中心对称图形,故本选项不符合题意;
D、是中心对称图形,故本选项符合题意.
故选:D.
【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分能够完全重合.
8.如图,是的弦,点C是优弧上的动点(C不与A、B重合),,垂足为H,点M是的中点.若的半径是3,则长的最大值是(

A.3
B.4
C.5
D.6
【答案】A
【解析】
【分析】
根据直角三角形斜边中线定理,斜边上的中线等于斜边的一半可知MH=BC,当BC为直径时长度最大,即可求解.
【详解】
解:∵
∴∠BHC=90°
∵在Rt△BHC中,点M是的中点
∴MH=BC
∵BC为的弦
∴当BC为直径时,MH最大
∵的半径是3
∴MH最大为3.
故选:A.
【点评】本题考查了直角三角形斜边中线定理,数形结合是结题关键.
9.如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是(

A.
B.
C.
D.
【答案】B
【解析】
【分析】
由旋转的性质可知,,进而得出为等边三角形,进而求出.
【详解】
解:∵
由直角三角形中,30°角所对的直角边等于斜边的一半可知,
∴cm,
又∠CAB=90°-∠ABC=90°-30°=60°,
由旋转的性质可知:,且,
∴为等边三角形,
∴.
故选:B.
【点评】本题考查了直角三角形中30°角所对的直角边等于斜边的一半,旋转的性质等,熟练掌握其性质是解决此类题的关键.
10.如图,在中,,将绕点C顺时针旋转得到,使点B的对应点E恰好落在边上,点A的对应点为D,延长交于点F,则下列结论一定正确的是(

A.
B.
C.
D.
【答案】D
【解析】
【分析】
本题可通过旋转的性质得出△ABC与△DEC全等,故可判断A选项;可利用相似的性质结合反证法判断B,C选项;最后根据角的互换,直角互余判断D选项.
【详解】
由已知得:△ABC△DEC,则AC=DC,∠A=∠D,∠B=∠CED,故A选项错误;
∵∠A=∠A,∠B=∠CED=∠AEF,
故△AEF△ABC,则,
假设BC=EF,则有AE=AB,
由图显然可知AEAB,故假设BC=EF不成立,故B选项错误;
假设∠AEF=∠D,则∠CED=∠AEF=∠D,
故△CED为等腰直角三角形,即△ABC为等腰直角三角形,
因为题干信息△ABC未说明其三角形性质,故假设∠AEF=∠D不一定成立,故C选项错误;
∵∠ACB=90°,
∴∠A+∠B=90°.
又∵∠A=∠D,
∴∠B+∠D=90°.
故AB⊥DF,D选项正确.
故选:D.
【点评】本题考查旋转的性质以及全等三角形的性质,证明过程常用角的互换、直角互余作为解题工具,另外证明题当中反证法也极为常见,需要熟练利用.
11.如图,在半径为5的中,将劣弧沿弦翻折,使折叠后的恰好与、相切,则劣弧的长为(

A.
B.
C.
D.
【答案】B
【解析】
【分析】
如图画出折叠后所在的⊙O',连O'B,O'A,根据题意可得O'B⊥OB、O'A⊥OA,且OB=OA=O'B=O'A,得到四边形O'BOA是正方形,即∠O=90°,最后根据弧长公式计算即可.
【详解】
解:如图:画出折叠后所在的⊙O',连O'B,O'A
∵恰好与、相切
∴O'B⊥OB、O'A⊥OA
∵OB=OA=O'B=O'A,
∴四边形O'BOA是正方形
∴∠O=90°
∴劣弧的长为.
故答案为B.
【点评】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.
12.下列四个图形中,是中心对称图形的是(

A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据中心对称的图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就是中心对称图形.
【详解】
A选项不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项是中心对称图形,故本选项错误;
D选项不是中心对称图形,故本选项错误;
故本题答案选C.
【点评】本题主要考查的是中心对称图形的定义,理解定义是解本题的关键.
二、填空题
13.如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为_____.
【答案】.
【解析】
【分析】
连接OA,设半径为x,用x表示OC,根据勾股定理建立x的方程,便可求得结果.
【详解】
解:解:连接OA,设半径为x,
将劣弧沿弦AB折叠交于OC的中点D,
,,



解得,.
故答案为.
【点评】本题主要考查了圆的基本性质,垂径定理,勾股定理,关键是根据勾股定理列出半径的方程.
14.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是________.
【答案】π.
【解析】
【分析】
由题意得出:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,求出圆的半径,由圆的周长公式即可得出结果.
【详解】
由题意得:
四叶幸运草的周长为4个半圆的弧长=2个圆的周长,
∴四叶幸运草的周长=2π×2=π;
故答案为π.
【点评】本题考查了正多边形和圆、正方形的性质以及圆周长公式;由题意得出四叶幸运草的周长=2个圆的周长是解题的关键.
15.半径为的是锐角三角形的外接圆,,连接,延长交弦于点.若是直角三角形,则弦的长为_____.
【答案】或
【解析】
【分析】
分∠ODB=90°与∠DOB=90°两种情况分别进行求解即可.
【详解】
如图1,当时,
即,



是等边三角形,




如图2,当,

是等腰直角三角形,∠OBC=45°,

综上所述,若是直角三角形,则弦的长为或,
故答案为或.
【点评】本题考查了垂径定理,等腰三角形的性质与判定,等边三角形的判定与性质,解直角三角形等,正确把握和灵活运用相关知识是解题的关键.注意分类讨论思想的运用.
16.如图,为的直径,为上一点,过点的切线交的延长线于点,为弦的中点,,,若点为直径上的一个动点,连接,当是直角三角形时,的长为__________.
【答案】4或2.56.
【解析】
【分析】
根据勾股定理求出AB,由△BCD∽△ABD得到比例式求出CD的长,当是直角三角形时,分∠AEP=90°和∠APE=90°两种情况进行讨论,可求出AP长有2种情况.
【详解】
解:连接BC
过点的切线交的延长线于点,


当时,,
经过圆心,

当时,则,

∵AB是直径,
∴∠ACB=90°.
∴∠BCD=90°.
∵∠BCD
=∠ABD,∠D是公共角,
∴△BCD∽△ABD.







综上的长为4或2.56.
故答案为4或2.56.
【点评】本题考查的是切线的性质和相似三角形的判定与性质,熟练掌握圆的性质是解题的关键.
17.如图,在⊙中,半径垂直于弦,点在圆上且,则的度数为_____.
【答案】
【解析】
【分析】
利用圆周角与圆心角的关系即可求解.
【详解】





故答案为.
【点评】此题考查圆周角与圆心角,解题关键在于求出
18.如图,在中,,.将绕点按顺时针方向旋转至的位置,点恰好落在边的中点处,则的长为________.
【答案】
【解析】
【分析】
根据题意,判断出ABC斜边BC的长度,根据勾股定理算出AC的长度,且,所以为等边三角形,可得旋转角为60°,同理,,故也是等边三角形,的长度即为AC的长度.
【详解】
解:在ABC中,∠BAC=90°,AB=2,将其进行顺时针旋转,落在BC的中点处,
∵是由ABC旋转得到,∴,而,
根据勾股定理:,
又∵,且,∴为等边三角形,
∴旋转角,
∴,且,故也是等边三角形,
∴,
故答案为:.
【点评】本题主要考查了旋转性质的应用以及勾股定理的计算,解题的关键在于通过题中所给的条件,判断出图形旋转的度数,知道图形旋转的角度后,有关线段的长度也可求得.
三、解答题
19.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.
(1)平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为______;
(2)将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为______;
(3)在轴上找出点,使的周长最小,并直接写出点的坐标为______.
【答案】(1)(2,-4)
(2)
(3)(0,4)
【解析】
【分析】
(1)平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,向下平移5个单位,故可以确定D点坐标.
(2)根据B、C、E三点坐标,连接BE,可以判断出△BCE为直角三角形,故可求解的值.
(3)过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.此时△ABF的周长最小,通过求解函数解析式确认点F的坐标.
【详解】
解:(1)如图所示:平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,再向下平移5个单位,根据题意可知,B点(-3,1)平移到D点,故可以确定点D的坐标.
点D的坐标为;
(2)如图所示:
根据题意,AE是线段AB围绕点A逆时针旋转90°得到,故AB=AE,不难算出点E的坐标为(3,3).连接BE,根据B、C、E三点坐标算出BC=、EC=、BE=,故,可以判断出△BEC为直角三角形.

(3)如图所示:
过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.故可知A’的坐标为(1,5),点B的坐标为(-3,1),设A’B的函数解析式为y=kx+b,将(1,5),(-3,1)代入函数解析中解得k=1,b=4,则函数解析式为y=x+4,则F点坐标为(0,4),
故点F的坐标为(0,4).
【点评】(1)本题主要考查平移,洞察点A是如何平移到点C,是求出D点坐标的关键.(2)连接BE,根据B、C、E三点坐标判断出△BCE是直角三角形,就不难算出的值.(3)本题通过做A点的对称点A’,连接A’B,找到A’B与y轴的交点F是解答本题的关键.
20.如图1,为半圆的直径,点为圆心,为半圆的切线,过半圆上的点作交于点,连接.
(1)连接,若,求证:是半圆的切线;
(2)如图2,当线段与半圆交于点时,连接,,判断和的数量关系,并证明你的结论.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)连接,根据切线的性质得到,推出四边形是平行四边形,得到,等量代换得到,推出四边形是平行四边形,根据平行四边形的性质得到,于是得到结论;
(2)如图2,连接,根据圆周角定理得到,求得,证得,等量代换即可得到结论.
【详解】
(1)证明:连接,
为半圆的切线,为半圆的直径,

,,
四边形是平行四边形,



四边形是平行四边形,





是半圆的切线;
(2)解:,
理由:如图2,连接,
为半圆的直径,








【点评】本题考查了切线的判定和性质,圆周角定理,平行四边形的判定和性质,正确的作出辅助线是解题的关键.
21.如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使.
(1)求证:是⊙的切线;
(2)若,求阴影部分的面积.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)连接,过作于,由直角三角形的性质及角平分线的性质得到,再根据直角的定义即可证明∠CAO=90°,即可证明;
(2)由及圆的性质可得是等边三角形,再利用割补法即可求出阴影部分的面积.
【详解】
(1)证明:连接,过作于,
∴,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴是⊙的切线;
(2)解:∵,
∴,
∵,
∴,
∵,

∴,
∵,
∴,,
∴是等边三角形,
∴,,
∴,
∴,
在中,,
∴,
∴阴影部分的面积.
【点评】此题主要考查圆的切线与扇形面积的求解,解题的关键是熟知圆的性质及判定定理.
22.图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上;
(1)在图1中画出以为底边的等腰直角,点在小正方形顶点上;(2)在图2中画出以为腰的等腰,点在小正方形的顶点上,且的面积为8.
【答案】(1)详见解析;(2)详见解析;
【解析】
【分析】
(1)由题可知,点B满足这两个条件,说明点B在AC的垂直平分线上,说明点B在以AC为直径的圆上,故可作的垂直平分线及以为直径的圆,其交点即为所求;(2)由题可知,点D满足CA=CD,故可以为圆心,为半径作圆,交于一格点D,经计算的面积为8,故点D即为所求.
【详解】
解;(1)作的垂直平分线,作以为直径的圆,垂直平分线与圆的交点即为点;
(2)以为圆心,为半径作圆,格点即为点;
【点评】本题主要考查了利用线段垂直平分线的性质及圆的性质作图,正确理解题意并知晓作图依据是解题的关键.
23.如图,是的直径,.
(1)求证:是的切线;
(2)若点是的中点,连接交于点,当,时,求的值.
【答案】(1)见解析;(2)
【解析】
【分析】
(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=900,从而可判断AC是⊙O的切线;
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,从而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
【详解】
(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵BD=5,CD=4,
∴BC=9,
∵△ADC∽△BAC(已证),
∴,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
,
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=
.
【点评】考查了切线的判定、相似三角形的判定与性质,解答本题的关键是熟练掌握切线的判定定理、相似三角形的性质,勾股定理的表达式.
24.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
【答案】(1)证明见解析(2)4
【解析】
解:(1)证明:∵∠APC和∠ABC是同弧所对的圆周角,∴∠APC=∠ABC.
又∵在△ABC中,∠BAC=∠APC=60°,∴∠ABC=60°.
∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°.
∴△ABC是等边三角形.
(2)连接OB,
∵△ABC为等边三角形,⊙O为其外接圆,
∴O为△ABC的外心.
∴BO平分∠ABC.∴∠OBD=30°.∴OD=8×=4.
(1)根据同弧所对的圆周角相等的性质和已知∠BAC=∠APC=60°可得△ABC的每一个内角都等于600,从而得证.
(2)根据等边三角形三线合一的性质,得含30度角直角三角形OBD,从而根据30度角所对边是斜边一半的性质,得OD=8×=4
25.如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接,,.
(1)求证:是的平分线;
(2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.
【答案】(1)详见解析;(2)是,
;(3)
【解析】
【分析】
(1)根据等弧对等角的性质证明即可;
(2)延长DA到E,让AE=DB,证明△EAC≌△DBC,即可表示出S的面积;
(3)作点D关于直线BC、AC的对称点D1、D2,当D1、M、N、D共线时△DMN取最小值,可得t=D1D2,有对称性推出在等腰△D1CD2中,t=,D与O、C共线时t取最大值即可算出.
【详解】
(1)∵△ABC为等边三角形,BC=AC,
∴,都为圆,
∴∠AOC=∠BOC=120°,
∴∠ADC=∠BDC=60°,
∴DC是∠ADB的角平分线.
(2)是.
如图,延长DA至点E,使得AE=DB.
连接EC,则∠EAC=180°-∠DAC=∠DBC.
∵AE=DB,∠EAC=∠DBC,AC=BC,
∴△EAC≌△DBC(SAS),
∴∠E=∠CDB=∠ADC=60°,
故△EDC是等边三角形,
∵DC=x,∴根据等边三角形的特殊性可知DC边上的高为
∴.
(3)依次作点D关于直线BC、AC的对称点D1、D2,根据对称性
C△DMN=DM+MN+ND=D1M+MN+ND2.
∴D1、M、N、D共线时△DMN取最小值t,此时t=D1D2,
由对称有D1C=DC=D2C=x,∠D1CB=∠DCB,∠D2CA=∠DCA,
∴∠D1CD2=∠D1CB+∠BCA+∠D2CA=∠DCB+60°+∠DCA=120°.
∴∠CD1D2=∠CD2D1=60°,
在等腰△D1CD2中,作CH⊥D1D2,
则在Rt△D1CH中,根据30°特殊直角三角形的比例可得D1H=,
同理D2H=
∴t=D1D2=.
∴x取最大值时,t取最大值.
即D与O、C共线时t取最大值,x=4.
所有t值中的最大值为.
【点评】本题考查圆与正多边形的综合以及动点问题,关键在于结合题意作出合理的辅助线转移已知量.
26.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.
(1)求证:BP是⊙O的切线;
(2)如果OA=5,AM=4,求PN的值;
(3)如果PD=PH,求证:AH?OP=HP?AP.
【答案】(1)见解析;(2);(3)见解析
【解析】
【分析】
(1)连接BC,OB,证明OB⊥PB即可.
(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.
(3)证明△NAH∽△NPD,推出=,证明△PAN∽△OAP,推出=,推出=可得结论.
【详解】
(1)如图,连接BC,OB.
∵CD是直径,
∴∠CBD=90°,
∵OC=OB,
∴∠C=∠CBO,
∵∠C=∠BAD,∠PBD=∠DAB,
∴∠CBO=∠PBD,
∴∠OBP=∠CBD=90°,
∴PB⊥OB,
∴PB是⊙O的切线;
(2)∵CD⊥AB,
∴CD垂直平分AB,
∴PA=PB,
∵OA=OB,OP=OP,
∴△PAO≌△PBO(SSS),
∴∠OAP=∠OBP=90°,
∵∠AMO=90°,
∴OM===3,
∵∠AOM=∠AOP,∠OAP=∠AMO,
∴△AOM∽△POA,
∴=,
∴=,
∴OP=,
∵PN⊥PC,
∴∠NPC=∠AMO=90°,
∴=,
∴=,
∴PN=.
(3)∵PD=PH,
∴∠PDH=∠PHD,
∴∠PDN=∠PHD=∠AHN,
∵∠NPC=90°,∠OAP=90°,
∴∠NAH
=∠NPD=90°,
∴△NAH∽△NPD,
∴=,
∵∠APN+∠PNA=∠POA+∠PNA=90°,
∴∠APN=∠POA,
又∠PAN=∠PAO=90°,
∴△PAN∽△OAP,
∴=,
∴=,
∴==,
∴AH?OP=HP?AP.
【点评】本题综合考查了切线的判定和性质,垂径定理,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第二十四章
圆【真题训练】
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是(

A.B.C.D.
2.如图⊙O的直径垂直于弦,垂足是,,,的长为(

A.
B.4
C.
D.8
3.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是(

A.勾股定理
B.直径所对的圆周角是直角
C.勾股定理的逆定理
D.90°的圆周角所对的弦是直径
4.如图,在⊙O中,,∠AOB=50°,则∠ADC的度数是(??

A.50°
B.40°
C.30°
D.25°
5.如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是(

A.为等腰三角形
B.与相互垂直平分
C.点A、B都在以为直径的圆上
D.为的边上的中线
6.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为(

A.2cm
B.cm
C.
D.
7.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是(  )
A.
B.
C.
D.
8.如图,是的弦,点C是优弧上的动点(C不与A、B重合),,垂足为H,点M是的中点.若的半径是3,则长的最大值是(

A.3
B.4
C.5
D.6
9.如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是(

A.
B.
C.
D.
10.如图,在中,,将绕点C顺时针旋转得到,使点B的对应点E恰好落在边上,点A的对应点为D,延长交于点F,则下列结论一定正确的是(

A.
B.
C.
D.
11.如图,在半径为5的中,将劣弧沿弦翻折,使折叠后的恰好与、相切,则劣弧的长为(

A.
B.
C.
D.
12.下列四个图形中,是中心对称图形的是(

A.
B.
C.
D.
二、填空题
13.如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为_____.
14.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是________.
15.半径为的是锐角三角形的外接圆,,连接,延长交弦于点.若是直角三角形,则弦的长为_____.
16.如图,为的直径,为上一点,过点的切线交的延长线于点,为弦的中点,,,若点为直径上的一个动点,连接,当是直角三角形时,的长为__________.
17.如图,在⊙中,半径垂直于弦,点在圆上且,则的度数为_____.
18.如图,在中,,.将绕点按顺时针方向旋转至的位置,点恰好落在边的中点处,则的长为________.
三、解答题
19.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.
(1)平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为______;
(2)将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为______;
(3)在轴上找出点,使的周长最小,并直接写出点的坐标为______.
20.如图1,为半圆的直径,点为圆心,为半圆的切线,过半圆上的点作交于点,连接.
(1)连接,若,求证:是半圆的切线;
(2)如图2,当线段与半圆交于点时,连接,,判断和的数量关系,并证明你的结论.
21.如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使.
(1)求证:是⊙的切线;
(2)若,求阴影部分的面积.
22.图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上;
(1)在图1中画出以为底边的等腰直角,点在小正方形顶点上;(2)在图2中画出以为腰的等腰,点在小正方形的顶点上,且的面积为8.
23.如图,是的直径,.
(1)求证:是的切线;
(2)若点是的中点,连接交于点,当,时,求的值.
24.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,
(1)求证:△ABC是等边三角形;
(2)求圆心O到BC的距离OD.
25.如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接,,.
(1)求证:是的平分线;
(2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.
26.如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.
(1)求证:BP是⊙O的切线;
(2)如果OA=5,AM=4,求PN的值;
(3)如果PD=PH,求证:AH?OP=HP?AP.
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
21世纪教育网(www.21cnjy.com)