人教版 九年级数学上册 25.2 用列举法求概率 同步训练(Word版 含答案)

文档属性

名称 人教版 九年级数学上册 25.2 用列举法求概率 同步训练(Word版 含答案)
格式 doc
文件大小 590.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-11-15 00:08:54

图片预览

文档简介

人教版 九年级数学上册 25.2 用列举法求概率 同步训练
一、选择题
1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为(  )
A. B. C. D.
2. 2019·广西 “学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从图书馆、博物馆、科技馆三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是(  )
A. B. C. D.
3. 如图25-2-1,有以下三个条件:①AC=AB;②AB∥CD;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是(  )
A.0 B. C. D.1
4. 2019·临沂 经过某十字路口的汽车,可能直行,也可能向左转或向右转,若这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是(  )
A. B. C. D.
5. 2019·德州 甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为(  )
A. B. C. D.
6. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是(  )
A. B. C. D.
7. 如图,有一块质地均匀的圆铁片,两面上分别写有数字1,2,有一个均匀的三棱锥旋转器和一个均匀的四棱锥旋转器,它们的侧面上分别写有数字1,2,3和数字1,2,3,4.在桌面上同时旋转这三件器物,停下来后,面向桌面的三个数字的积为奇数的概率是(  )
A. B. C. D.
8. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是(  )
A. B. C. D.
9. 定义一种“十位上的数字比个位上的数字、百位上的数字都大”的三位数叫做“中高数”,如796就是一个“中高数”.若某三位数十位上的数字为7,从3,4,5,6,8,9中任选两数分别作为个位和百位上的数字,则与7组成“中高数”的概率是(  )
A. B. C. D.
10. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是(  )
A. B. C. D.
二、填空题
11. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.
12. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是________.
13. (2019·甘肃陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:

请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).

14. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.
15. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a,b,c,则以a,b,c为边长正好构成等边三角形的概率是________.
16. 已知电路AB由如图所示的开关控制,闭合a,b,c,d,e五个开关中的任意两个,则能使电路形成通路的概率是________.
三、解答题
17. 某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每名学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.
(1)小丽参加实验A考查的概率是________;
(2)用画树状图的方法求小明、小丽都参加实验A考查的概率;
(3)他们三人都参加实验A考查的概率是________.
18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:
(1)随机选择一天,恰好天气预报是晴;
(2)随机选择连续的两天,恰好天气预报都是晴.
19. 如图①,一枚质地均匀的正四面体骰子,它有四个面,且每个面上分别标有数字1,2,3,4.
如图②,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈B……
设游戏者从圈A起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性是否一样.
    
人教版 九年级数学上册 25.2 用列举法求概率 同步训练-答案
一、选择题
1. 【答案】D 
2. 【答案】A
3. 【答案】D [解析] 构成如下命题:如果①AC=AB,②AB∥CD,那么③∠1=∠2;如果②AB∥CD,③∠1=∠2,那么①AC=AB;如果①AC=AB,③∠1=∠2,那么②AB∥CD.这三个命题都是真命题.
故选D.
4. 【答案】B 
5. 【答案】C
6. 【答案】B [解析] 从树状图(C代表雌鸟,X代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是.故选B.
7. 【答案】C [解析] 画树状图如下:
因为共有24种等可能结果,面向桌面的三个数字的积为奇数的结果有4种,所以所求概率为.
8. 【答案】A [解析] 3本小说分别记作A,B,C,2本散文分别记作D,E.
一共有20种等可能的结果,其中2本都是小说的结果有6种,因此随机抽取2本都是小说的概率是.
9. 【答案】C [解析] 画树状图如下:
∵共有30种等可能的结果,与7组成“中高数”的结果有12种,
∴与7组成“中高数”的概率是=.
10. 【答案】D [解析] 如图,用A,B,C分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,
∴P(三人摸到球的颜色都不相同)==.
二、填空题
11. 【答案】
12. 【答案】 [解析] 若从-1,1,2这三个数中任取两个分别作为点M的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M在第二象限的概率是.
13. 【答案】0.5
【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.

14. 【答案】 [解析] 可设第一个位置和第三个位置都与A相邻.
画树状图如下:
∵共有6种等可能结果,A与B不相邻坐的结果有2种,
∴A与B不相邻坐的概率为.
15. 【答案】 [解析] 画树状图如下:
∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a,b,c为边长正好构成等边三角形的概率是=.
16. 【答案】 [解析] 列表如下:
∴一共有20种等可能的结果,使电路形成通路的结果有12种,
∴使电路形成通路的概率是=.
三、解答题
17. 【答案】
解:(1)
(2)画树状图如下:
∵小明、小丽两人参加实验考查共有4种等可能的结果,而两人均参加实验A考查的结果有1种,∴小明、小丽都参加实验A考查的概率为.
(3)
18. 【答案】
解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为.
(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,
∴随机选择连续的两天,恰好天气预报都是晴的概率为=.
19. 【答案】
解:(1)∵掷一次骰子有4种等可能的结果,只有掷得4时,才会落回到圈A,
∴P1=.
(2)列表如下:
所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即掷得的结果为(1,3),(2,2),(3,1),(4,4)时,才可落回到圈A,共有4种结果,
∴P2==.而P1=,∴淇淇与嘉嘉落回到圈A的可能性一样.