13.3.2 等边三角形 课件 (共18张ppt)+课时训练+教案

文档属性

名称 13.3.2 等边三角形 课件 (共18张ppt)+课时训练+教案
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2020-11-23 14:22:36

文档简介

中小学教育资源及组卷应用平台
《等边三角形》同步练习3
一、选择题(每题6分,共30分)每题有且只有一个正确答案
1.等腰三角形(不等边)的角平分线、中线和高的条数总和是(

A.3    B.5    C.7    D.9
2.在射线、角和等腰三角形中,它们(
)轴对称图形
A.都是        
B.只有一个是
C.只有一个不是    
D.都不是
3.如下图:△ABC中,AB=AC,∠A=36°,D是AC上一点,若∠BDC=72°,则图形中共有(
)个等腰三角形。
A.1    B.2    C.3    D.4
4.三角形内有一点,它到三角形三边的距离都相等,同时与三角形三顶点的距离也都相等,则这个三角形一定是(

A.等腰三角形
B.等腰直角三角形
C.非等腰三角形
D.等边三角形
5.△ABC中,AB=AC,AB边的中垂线与直线AC所成的角为50°,则∠B等于(

A.70°       B.20°或70°
C.40°或70°   
D.40°或20°
二、填空题(每题6分,共30分)
1.等腰三角形中的一个外角为130°,则顶角的度数是_______________

2.△ABC中,AB=AC,CD⊥AB于D,CD=3,∠B=75°,则AB=_________________
3.如下图:△ABC
中,AB=AC,DE是AB中垂线交AB、AC于D,E,若△BCE的周长为24,AB=14,则BC=________,若∠A=50°,则∠CBE=
______________。
4.等腰三角形中有两个角的比为1:10,则顶角的度数是__________________。
5.如下图:等边△ABC,D是形外一点,若AD=AC,则∠BDC=_____________度。
三、作图题(6分),只画图,不写作法。
如左图:直线MN及点A,B。
在直线MN上作一点P,使∠APM=∠BPM。
四、解答题(第1小题12分,第2、3小题各11分)
1.已知:如图△ABC中,AB=AC,BD⊥AC,CE⊥AB,BD、CE交于H。
求证:HB=HC。
2.已知:如图:等边△ABC,D、E分别是BC、AC上的点,AD、BE交于N,BM⊥AD于M,若AE=CD,求证:。
3.已知:如图:△ABC中,AD⊥BC于D,∠BAC=120°,AB+BD=DC。
求:∠C的度数。
选作题:
已知:如图:△ABC中,D是BC上一点,P是AD上一点,若∠1=∠2,PB=PC。
求证:AD⊥BC。
《等边三角形》同步练习3答案
一、选择题(每题6分,共30分)每题有且只有一个正确答案
1.C
2.A
3.C
4.D
5.B
二、填空题(每题6分,共30分)
1.50°或80°
2.6
3.10,15°
4.150°或
5.30
三、作图题(6分),只画图,不写作法。
四、解答题(第1小题12分,第2、3小题各11分)
证明:∵AB=AC,∴∠ABC=∠ACB(同一△中等边对等角)
∵CE⊥AB,∴∠1+∠ABC=90°(直角三角形中两个锐角互余)
同理∠2+∠ACB=90°,∴∠1=∠2,
∴HB=HC(同一△中等角对等边)
2.证明:∵等边△ABC,∴AC=BA,∠C=∠BAC=60°
在△ABE和△CAD中,∵BA=AC,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS)
∴∠2=∠1
∵∠BNM=∠3+∠2,∴∠BNM=∠3+∠1=∠BAC=60°
∵BM⊥AD,∴∠4+∠BNM=90°,∴∠4=30°
∵BM⊥AD,∴(直角三角形中,30°角所对直角边等于斜边的一半)
3.解:延长DB到E,使BE=AB,连结AE,则∠1=∠E。
∵∠ABC=∠1+∠E,∴∠ABC=2∠E
∵AB+BD=DC,∴BE+BD=DC,即DE=DC
∵AD⊥BC,∴AE=AC,∴∠C=∠E,∴∠ABC=2∠C
∵∠ABC+∠C+∠BAC=180°,∠BAC=120°
∴2∠C+∠C=180°-120°=60°,
∴∠C=20°
答:∠C的度数是20°
选作题
证明:作PM⊥AB于M,PN⊥AC于N
∵∠1=∠2,∴PM=PN
在Rt△BPM和Rt△CPN中
∴Rt△BPM≌Rt△CPN(HL)
∴∠ABP=∠ACP
∵PB=PC,∴∠PBC=∠PCB。
∴∠ABP+∠PBC=∠ACP+∠PCB,即∠ABC=∠ACB。
∴AB=AC,∵∠1=∠2
∴AD⊥BC
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
《等边三角形》教案3
教学目标
1.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.
3.积极参与数学学习活动,对数学有好奇心和求知欲.
4.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
教学重点
等边三角形判定定理的发现与证明.
教学难点
1.等边三角形判定定理的发现与证明.
2.引导学生全面、周到地思考问题.
教学方法
探索发现法.
教具准备
多媒体课件,投影仪.
教学过程
Ⅰ.提出问题,创设情境
[师]我们在前两节课研究证明了等腰三角形的性质和判定定理,我们知道,在等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形.回答下面的三个问题.
(演示课件)
1.把等腰三角形的性质用到等边三角形,能得到什么结论?
2.一个三角形满足什么条件就是等边三角形?
3.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.
(教师应给学生自主探索、思考的时间)
[生甲]由等边对等角的性质可知,等边三角形的三个角相等,又由三角形三内角和定理可知,等边三角形的三个角相等,并且都等于60°.
[生乙]等腰三角形已有两边分别相等,所以我认为只要腰和底边相等,等腰三角形就是等边三角形了.
[生丙]等边三角形的三个内角都相等,且分别都等于60°,我认为等腰三角形的三个内角都等于60°,也就是说这个等腰三角形就是等边三角形了.
(此时,部分同学同意此生看法,部分同学不同意此生看法,引起激烈的争论,教师可让同学代表发表自己的看法)
[生丁]我不同意这个同学的看法,因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等,但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!
[师]给三个角都是60°,这个条件确实有点浪费,那么给什么条件不浪费呢?下面同学们可以在小组内交流自己的看法.
Ⅱ.导入新课
探索等腰三角形成等边三角形的条件.
[生]如果等腰三角形的顶角是60°,那么这个三角形是等边三角形.
[师]你能给大家陈述一下理由吗?
[生]根据三角形的内角和定理,顶角是60°,等腰三角形的两个底角的和就是180°-
60°=120°,再根据等腰三角形两个底角是相等的,所以每个底角分别是120°÷2=60°,则三个内角分别相等,根据等角对等边,则此时等腰三角形的三条边是相等的,即顶角为60°的等腰三角形为等边三角形.
[生]等腰三角形的底角是60°,那么这个三角形也是等边三角形,同样根据三角形内角和定理和等角对等边、等边对等角的性质.
[师]从同学们自主探索和讨论的结果可以发现:在等腰三角形中,不论底角是60°,还是顶角是60°,那么这个等腰三角形都是等边三角形.你能用更简洁的语言描述这个结论吗?
[生]有一个角是60°的等腰三角形是等边三角形.
(这个结论的证明对学生来说可能有一定的难点,难点是意识到分别讨论60°的角是底角和顶角两种情况.这是一种分类讨论的思想,教师要关注学生得出证明思路的过程,引导学生全面、周到地思考问题,并有意识地向学生渗透分类的思想方法)
[师]你在与同伴的交流过程中,发现了什么或受到了何种启示?
[生]我发现我的证明过程没有意识到“有一个角是60°”,在等腰三角形中有两种情况:
(1)这个角是底角;(2)这个角是顶角.也就是说我们思考问题要全面、周到.
[师]我们来看有多少同学意识到分别讨论60°的角是底角和顶角的情况,我们鼓掌表示对他们的鼓励.
今天,我们探索、发现并证明了等边三角形的判定定理;有一个角等于60°的等腰三角形是等边三角形,我们在证明这个定理的过程中,还得出了三角形为等边三角形的条件,是什么呢?
[生]三个角都相等的三角形是等边三角形.
[师]下面就请同学们来证明这个结论.
(投影仪演示学生证明过程)
已知:如图,在△ABC中,∠A=∠B=∠C.
求证:△ABC是等边三角形.
证明:∵∠A=∠B,
∴BC=AC(等角对等边).
又∵∠A=∠C,
∴BC=AC(等角对等边).
∴AB=BC=AC,即△ABC是等边三角形.
[师]这样,我们由等腰三角形的性质和判定方法就可以得到.
(演示课件)
等边三角形的三个内角都相等,并且每一个角都等于60°;
三个角都相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
[师]有了上述结论,我们来学习下面的例题,体会上述定理.
(演示课件)
[例4]如图,课外兴趣小组在一次测量活动中,测得∠APB=
60°,AP=BP=200m,他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗?
分析:我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,由本节课探究结论知△APB为等边三角形.
解:在△APB中,AP=BP,∠APB=60°,
所以∠PAB=∠PBA=(180°-∠APB)=(180°-60°)=60°.
于是∠PAB=∠PBA=∠APB.
从而△APB为等边三角形,AB的长是200m,由此可以得出兴趣小组的结论是正确的.
Ⅲ.随堂练习
课本练习
1、2.
板书设计
一、探索等边三角形的性质及判定
问题:一个等腰三角形满足什么条件时便成为等边三角形
二、等边三角形的性质及判定
三、应用例题讲解
四、随堂练习
五、课时小结
六、课后作业
备课资料
等腰三角形(含等边三角形)的性质与判定.
性质
判定的条件
等腰三角形(含等
边三角形)
等边对等角
等角对等边
“三线合一”即等腰三角形顶角平分线,底边上的中线、高互相重合
有一角是60°的等腰三角形是等边三角形
等边三角形的三个角都相等,且每个角都是60°
三个角都相等的三角形是等边三角形
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)(共18张PPT)
数学人教版八年级上册
第十三章
数学人教版八年级上册
第十三章
【合作复习】
1.等腰三角形的性质:
(1)等腰三角形的
相等;
(2)等腰三角形


__________互相重合;
2.等腰三角形中有一种特殊的等腰三角形---------三条边都
的三角形,
这样的三角形叫做等边三角形。
两个底角
顶角的平分线
底边上的中线
底边上的高
相等
【自主学习】
思考:(1)把等腰三角形的性质(等腰三角形的两个底角相等)用到等边三角形,能得到什么结论?
等边三角形的三个内角都相等,并且每一个角都等于600.
 证明:∵ △ABC
是等边三角形,
∴ BC
=AC,BC
=AB.
∴ ∠A
=∠B,∠A
=∠C

∴ ∠A
=∠B
=∠C

∵ ∠A
+∠B
+∠C
=180°,
∴ ∠A
=60°.
∴ ∠A
=∠B
=∠C
=60°.
细心观察,探索性质
已知:△ABC
是等边三角形,求证:∠A
=∠B
=∠C=60°
A
B
C
  对“等边三角形的三个内角都相等,并且每一个角
都等于60°”这一结论进行证明.
  符号语言:
  ∵ △ABC
是等边三角形,
  ∴ ∠A
=∠B
=∠C
=60°.
细心观察,探索性质
等边三角形的性质:
等边三角形的三个内角都相等,并且每一个角都等
于60°.
A
B
C
【自主学习】
思考:
(2)一个三角形满足什么条件就是等边三角形?
(3)你认为有一个角等于60°的等腰三角形是
等边三角形吗?
细心观察,探索性质
  请你将得到的这两个命题进行证明.
   
等边三角形
等腰三角形
一般三角形
[]
 证明:∵ ∠A
=∠B,∠B
=∠C

 ∴ BC
=AC,
AC
=AB.
 ∴ AB
=BC
=AC.
∴ △ABC
是等边三角形.
  已知:在△ABC
中,∠A=∠B=∠C.求证:△ABC
是等边三角形.
细心观察,探索性质
C
A
B
细心观察,探索性质
  已知:在△ABC
中,AC
=BC且∠A
=60°.求证:
△ABC是等边三角形.
C
A
B
符号语言:
在△ABC
中,
∵ ∠A=∠B
=∠C

∴ △ABC
是等边三角形.
细心观察,探索性质
  等边三角形的判定定理1:
  三个角都相等的三角形是等边三角形.
C
A
B
细心观察,探索性质
  等边三角形的判定定理2:
有一个角为60°的等腰三角形是等边三角形.
C
A
B
符号语言:
在△ABC
中,
∵ BC
=AC,∠A
=60°,
∴ △ABC
是等边三角形.
归纳:
等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于600.
等边三角形的判定:
三个角都相等的三角形是等边三角形.
有一个角为60°的等腰三角形是等边三角形.
  证明:
∵ △ABC
是等边三角形,
∴ ∠A
=∠B
=∠C
=60°.
∵ DE∥BC,
∴ ∠B
=∠ADE,∠C
=∠AED.
∴ ∠A=∠ADE
=∠AED.
∴ △ADE
是等边三角形.
动脑思考,例题解析
  例4 如图,△ABC
是等边三角形,DE∥BC,

别交AB,AC
于点D,E.求证:△ADE
是等边三角形.
  追问 本题还有其他证法吗?
A
B
C
D
E
  证明:∵ △ABC
是等边三角形,
∴ ∠A
=∠ABC
=∠ACB
=60°.
∵ DE∥BC,
∴ ∠ABC
=∠ADE,
∠ACB
=∠AED.
∴ ∠A
=∠ADE
=∠AED.
∴ △ADE
是等边三角形.
动脑思考,变式训练
  变式1 若点D、E
在边AB、AC
的延长线上,且
DE∥BC,结论还成立吗?
A
D
E
B
C
动脑思考,变式训练
  变式2 若点D、E
在边AB、AC
的反向延长线上,
且DE∥BC,结论依然成立吗?
  证明:
∵ △ABC
是等边三角形,
∴ ∠BAC
=∠B
=∠C
=60°.
∵ DE∥BC,
∴ ∠B
=∠D,∠C
=∠E.
∴ ∠EAD
=∠D
=∠E.
∴ △ADE
是等边三角形.
A
D
E
B
C
[]
(1)本节课学习了等边三角形的性质和判定;
(2)等边三角形与等腰三角形相比有哪些特殊的性质?
共有几种判定等边三角形的方法?
(3)结合本节课的学习,谈谈研究三角形的方法.
课堂小结
谢谢
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?
欢迎加入21世纪教育网教师合作团队!!月薪过万不是梦!!
详情请看:
https://www.21cnjy.com/help/help_extract.php