人教版
九年级数学上册
23.2
中心对称
课时训练
一、选择题
1.
下列图形中,一定既是轴对称图形又是中心对称图形的是( )
A.等边三角形
B.直角三角形
C.平行四边形
D.正方形
2.
如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF,当∠ACB=______时,四边形ABFE为矩形( )
A.90°
B.60°
C.45°
D.30°
3.
如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为( )
A.A2P的中点
B.A1B2的中点
C.A1O的中点
D.PO的中点
4.
把△ABC各点的横坐标都乘-1,纵坐标都乘-1,符合上述要求的图是( )
5.
如图,将△ABC以点O为旋转中心旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后变为线段E′D′.已知BC=4,则线段E′D′的长度为( )
A.2
B.3
C.4
D.1.5
6.
如图,已知菱形ABCD与菱形EFGH关于直线BD上的某个点中心对称,则点B的对称点是( )
A.点E
B.点F
C.点G
D.点H
7.
2019·襄阳期末
如图,在正方形网格中,格点三角形ABC绕某点顺时针旋转α度(0<α<180),得到格点三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α的值为( )
A.50
B.60
C.90
D.120
8.
若点P(-a,a-3)关于原点对称的点是第二象限内的点,则a满足( )
A.a>3
B.0<a≤3
C.a<0
D.a<0或a>3
9.
在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )
A.(4n-1,)
B.(2n-1,)
C.(4n+1,)
D.(2n+1,)
10.
2020·河北模拟
如图所示,A1(1,),A2(,),A3(2,),A4(3,0).作折线OA1A2A3A4关于点A4中心对称的图形,得折线A8A7A6A5A4,再作折线A8A7A6A5A4关于点A8中心对称的图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线以每秒1个单位长度的速度运动,设运动时间为t秒.当t=2020时,点P的坐标为( )
A.(1010,)
B.(2020,)
C.(2016,0)
D.(1010,)
二、填空题
11.
如图所示,在△ABC中,已知∠ACB=90°,AC=BC=2.若以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.
12.
如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.
13.
已知?ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2.若点A的坐标为(a,b),则点D的坐标为________________.
14.
如图,点A,B,C的坐标分别为(2,4),(5,2),(3,-1).若以点A,B,C,D为顶点的四边形既是轴对称图形,又是中心对称图形,则点D的坐标为________.
15.
如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为____________.
16.
如图,在平面直角坐标系中,对点P(1,0)作如下变换:先向上平移(后一次平移比前一次多1个单位长度),再作关于原点的对称点,即向上平移1个单位长度得到点P1,作点P1关于原点的对称点P2,向上平移2个单位长度得到点P3,作点P3关于原点的对称点P4……那么点P2020的坐标为____________.
17.
如果将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M对称,定点M叫做对称中心,此时,M是线段PQ的中点.如图3,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称……且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2020的坐标为________.
三、解答题
18.
如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF=CE.求证:DF=BE.
19.
[材料阅读]在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为.
[运用](1)已知点A(-2,1)和点B(4,-3),则线段AB的中点坐标是________;已知点M(2,3),线段MN的中点坐标是(-2,-1),则点N的坐标是________.
(2)已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6).直线y=mx-3m+2将四边形ABCD分成面积相等的两部分,则m的值为________.
(3)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D,可使以点A,B,C,D为顶点的四边形为平行四边形,求点D的坐标.
20.
如图,已知△ABC和点O.
(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于点O对称;
(2)点A,B,C,A′,B′,C′能组成哪几个平行四边形?请用符号表示出来.
人教版
九年级数学上册
23.2
中心对称
课时训练-答案
一、选择题
1.
【答案】D
2.
【答案】B [解析]
∵△ABC与△FEC关于点C对称,∴AC=FC,BC=EC,
∴四边形ABFE是平行四边形.
当AC=BC时,四边形ABFE是矩形,
∴BC=AC=AB,∴∠ACB=60°.
故选B.
3.
【答案】D [解析]
因为P,O是对称点,所以PO的中点是对称中心.
4.
【答案】C
5.
【答案】A [解析]
∵ED是△ABC的中位线,BC=4,∴ED=2.又∵△A′B′C′和△ABC关于点O中心对称,∴E′D′=ED=2.
6.
【答案】D [解析]
由于点B,D,F,H在同一条直线上,根据中心对称的定义可知,只能是点B和点H是对称点,点F和点D是对称点.故选D.
7.
【答案】C
8.
【答案】C [解析]
点P(-a,a-3)关于原点对称的点的坐标为(a,3-a).∵点(a,3-a)在第二象限内,∴解得a<0.
9.
【答案】C [解析]
A1(1,),A2(3,-),A3(5,),A4(7,-),…,
∴点An的坐标为
∵2n+1是奇数,∴点A2n+1的坐标是(4n+1,).故选C.
10.
【答案】A
二、填空题
11.
【答案】2
[解析]
∵△ABC绕AC的中点O旋转了180°,
∴OB=OB′,∴BB′=2OB.
又∵OC=OA=AC=1,BC=2,
∴在Rt△OBC中,OB===,
∴BB′=2OB=2
.
12.
【答案】6 [解析]
如图,过点A′作A′B′⊥a,垂足为B′,由题意可知,①与②关于点O中心对称,所以阴影部分的面积可以看作四边形A′B′OD的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.
13.
【答案】(-2-a,-b)或(2-a,-b)
[解析]
如图①,∵点A的坐标为(a,b),AB与x轴平行,∴B(2+a,b).
∵点D与点B关于原点对称,∴D(-2-a,-b).
如图②,∵B(a-2,b),且点D与点B关于原点对称,∴D(2-a,-b).
14.
【答案】(0,1)
15.
【答案】(-a,-b+2) [解析]
如图,过点A作AD⊥y轴于点D,过点A′作A′D′⊥y轴于点D′,则△ACD≌△A′CD′,∴A′D′=AD=a,CD′=CD=-b+1,∴OD′=-b+2,∴点A′的坐标为(-a,-b+2).
16.
【答案】(1,-505)
[解析]
根据题意可列出下面的表格:
观察表格可知:这些点平均分布在四个象限中,序号除以4余1的点在第一象限,横坐标都是1,纵坐标为序号减1除以4的商加1;序号除以4余2的点是序号除以4余1的点关于原点的对称点;序号能被4整除的点在第四象限,横坐标为1,纵坐标为序号除以4的商的相反数;序号除以4余3的点在第二象限,是序号能被4整除的点关于原点的对称点.因为2020÷4=505,所以点P2020在第四象限,坐标为(1,-505).
17.
【答案】(1,-3) [解析]
由题意可得点P2(1,-1),P3(-1,3),P4(1,-3),P5(1,3),P6(-1,-1),P7(1,1),可知6个点一个循环,2020÷6=336……4,故点P2020的坐标与点P4的坐标相同,为(1,-3).
三、解答题
18.
【答案】
证明:∵△ABO与△CDO关于点O中心对称,
∴BO=DO,AO=CO.
∵AF=CE,∴AO-AF=CO-CE,
即FO=EO.
在△FOD和△EOB中,
∴△FOD≌△EOB(SAS),
∴DF=BE.
19.
【答案】
解:(1)(1,-1) (-6,-5)
(2)
(3)设点D的坐标为(x,y).
若以AB为对角线,AC,BC为邻边的四边形为平行四边形,则AB,CD的中点重合,
∴解得
若以BC为对角线,AB,AC为邻边的四边形为平行四边形,则AD,BC的中点重合,
∴
解得
若以AC为对角线,AB,BC为邻边的四边形为平行四边形,则BD,AC的中点重合,
∴
解得
综上可知,点D的坐标为(1,-1)或(5,3)或(-3,5).
20.
【答案】
解:(1)如图所示.
(2)?ABA′B′,?BCB′C′,?CA′C′A.