人教版 九年级九年级数学 23.1 图形的旋转 突破训练
一、选择题
1. 将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )
A.平行四边形 B.矩形
C.菱形 D.正方形
2. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变换得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )
A.①④ B.②③ C.②④ D.③④
3. 在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是( )
A.(-2,3) B.(-3,2)
C.(2,-3) D.(3,-2)
4. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是 ( )
A.点A B.点B
C.点C D.点D
5. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 ( )
A.30° B.90° C.120° D.180°
6. 如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点顺时针旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )
A.(-4,1) B.(-1,2)
C.(4,-1) D.(1,-2)
7. 如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是( )
A.AC=AD B.AB⊥EB
C.BC=DE D.∠A=∠EBC
8. 如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )
A.(-1,2+) B.(-,3)
C.(-,2+) D.(-3,)
9. 如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是( )
图7-ZT-1
A.(-1,2+) B.(-,3)
C.(-,2+) D.(-3,)
10. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )
A.4 B.2
C.6 D.2
二、填空题
11. 如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:________________________________________________________________________________________________________________________________________________.
12. 如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=________°.
13. 如图所示,在Rt△ABC中,∠B=90°,AB=2 ,BC=.将△ABC绕点A逆时针旋转90°得到△AB′C′,连接B′C,则B′C=________.
14. 如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A逆时针旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为________ cm.
15. 如图,两块完全相同的含30°角的三角尺ABC和A′B′C′重合在一起,将三角尺A′B′C′绕其顶点C′逆时针旋转角α(0°<α≤90°),有以下三个结论:①当α=30°时,A′C与AB的交点恰好为AB的中点;②当α=60°时,A′B′恰好经过点B;③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是__________.
16. 分类讨论如图,点A的坐标为(-1,5),点B的坐标为(3,3),点C的坐标为(5,3),点D的坐标为(3,-1).小明发现线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_________.
教师详解详析
17. 2018·陕西 如图,点O是平行四边形ABCD的对称中心,AD>AB,E,F是AB边上的点,且EF=AB;G,H是BC边上的点,且GH=BC.若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是=________.
三、解答题
18. 如图,将一个钝角三角形ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得点C落在AB的延长线上的点C1处,连接AA1.
(1)写出旋转角的度数;
(2)求证:∠A1AC=∠C1.
19. 如图,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D分别在OE和OF上,现将△OEF绕点O逆时针旋转角α(0°<α<90°),连接AF,DE(如图②).
(1)在图②中,∠AOF=________;(用含α的式子表示)
(2)猜想图②中AF与DE的数量关系,并证明你的结论.
20. 2019·福建 如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是D,E.
(1)当点E恰好在AC上时,如图①,求∠ADE的度数;
(2)若α=60°,F是边AC的中点,如图②,求证:四边形BEDF是平行四边形.
21. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD.
求证:BD2=AB2+BC2.
22. 如图,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.
人教版 九年级九年级数学 23.1 图形的旋转 突破训练-答案
一、选择题
1. 【答案】D [解析] 平行四边形绕其对角线的交点旋转能够与原来的图形重合的最小旋转角度数是180°,故A错误;矩形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故B错误;菱形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故C错误;正方形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是90°.故选D.
2. 【答案】D [解析] 先将△ABC绕着B′C的中点旋转180°,再将所得的三角形绕着B′C′的中点旋转180°,即可得到△A′B′C′;先将△ABC沿着B′C的垂直平分线翻折,再将所得的三角形沿着B′C′的垂直平分线翻折,即可得到△A′B′C′.故选D.
3. 【答案】A [解析] 点P(-4,2)向右平移7个单位长度得到点P1(3,2),点P1绕原点逆时针旋转90°得到点P2(-2,3).故选A.
4. 【答案】B [解析] 旋转中心到对应点的距离相等.
5. 【答案】C
6. 【答案】D
7. 【答案】D [解析] 由旋转的性质可知,AC=CD,但∠A不一定是60°,所以不能证明AC=AD,所以选项A错误;因为旋转角度不定,所以选项B不能确定;因为不确定AB和BC的数量关系,所以BC和DE的数量关系不能确定,所以选项C不能确定;由旋转的性质可知∠ACD=∠BCE,AC=DC,BC=EC,所以2∠A=180°-∠ACD,2∠EBC=180°-∠BCE,从而可证选项D是正确的.
8. 【答案】B
9. 【答案】B [解析] 如图,过点B′作B′H⊥y轴于点H.
由题意得,OA′=A′B′=2,∠B′A′H=60°,
∴∠A′B′H=30°,
∴AH′=A′B′=1,B′H=,
∴OH=3,∴B′(-,3).
10. 【答案】D [解析] 由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=2 .
∵DE=2,∴在Rt△ADE中,AE==2 .故选D.
二、填空题
11. 【答案】将△OCD绕点C顺时针旋转90°,再向左平移2个单位长度即可得到△AOB(答案不唯一)
[解析] 观察图形可知,将△OCD绕点C顺时针旋转90°,再向左平移2个单位长度可得到△AOB(答案不唯一),注意是顺时针旋转还是逆时针旋转.
12. 【答案】20 [解析] ∵AB=AB′,∠BAB′=40°,
∴∠ABB′=70°.∵B′C′⊥AB,∴∠BB′C′=20°.
13. 【答案】5 [解析] 由勾股定理,得AC==5.过点C作CE⊥AB′于点E,则四边形ABCE是矩形,∴AE=BC=.又AB′=AB=2 ,∴AE=EB′=,∴CE垂直平分AB′,∴B′C=AC=5.
14. 【答案】(10-2 ) [解析] 如图,过点A作AG⊥DE于点G.由旋转知,AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,
∴∠AED=∠ADG=45°,
∴∠AFD=∠AED+∠CAE=60°.
在Rt△ADG中,AG=DG==3 (cm).
在Rt△AFG中,GF==(cm),AF=2FG=2 (cm),
∴CF=AC-AF=(10-2 )cm.
15. 【答案】①②③
16. 【答案】(4,4)或(1,1)
[解析] (1)若点A和点D、点B和点C分别为对应点,如图①,分别作线段AD,BC的垂直平分线,两条垂直平分线的交点P1(4,4)即为旋转中心;
(2)若点A和点C、点B和点D分别为对应点,如图②,分别作线段AC,BD的垂直平分线,两条垂直平分线的交点P2(1,1)即为旋转中心.综上所述,旋转中心的坐标是(4,4)或(1,1).
17. 【答案】 [解析] ∵==,==,
∴S1=S△AOB,S2=S△BOC.
∵点O是?ABCD的对称中心,
∴S△AOB=S△BOC=S平行四边形ABCD,∴=.
三、解答题
18. 【答案】
解:(1)旋转角的度数为60°.
(2)证明:由旋转的性质知∠ABC=∠A1BC1=120°,∠C=∠C1,AB=A1B.∵点A,B,C1在同一直线上,∴∠ABC1=180°,∴∠ABA1=∠CBC1=60°,∴∠A1BC=60°,
∵AB=A1B,∴△ABA1是等边三角形,
∴∠AA1B=∠A1BC=60°,
∴AA1∥BC,∴∠A1AC=∠C.
又∵∠C=∠C1,∴∠A1AC=∠C1.
19. 【答案】
解:(1)∵△OEF绕点O逆时针旋转角α,
∴∠DOF=∠COE=α.
∵四边形ABCD为正方形,
∴∠AOD=90°,
∴∠AOF=90°-α.
故答案为90°-α.
(2)猜想:AF=DE.
证明:∵四边形ABCD为正方形,
∴∠AOD=∠COD=90°,OA=OD.
∵∠DOF=∠COE=α,
∴∠AOF=∠DOE.
∵△OEF为等腰直角三角形,
∴OF=OE.
在△AOF和△DOE中,
∴△AOF≌△DOE(SAS),
∴AF=DE.
20. 【答案】
解:(1)∵△ABC绕点C顺时针旋转角α得到△DEC,点E恰好在AC上,
∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.
∵CA=CD,
∴∠CAD=∠CDA=(180°-30°)=75°,
∴∠ADE=90°-75°=15°.
(2)证明:连接AD.
∵F是边AC的中点,∠ABC=90°,
∴BF=AC.
∵∠ACB=30°,
∴AB=AC,
∴BF=AB.
∵△ABC绕点C顺时针旋转60°得到△DEC,
∴∠BCE=∠ACD=60°,BC=CE,CD=CA,DE=AB,
∴DE=BF,△ACD和△BCE均为等边三角形,
∴BE=CB.
∵F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△CFD≌△ABC,
∴DF=BC,
∴DF=BE.
又∵BF=DE,
∴四边形BEDF是平行四边形.
21. 【答案】
证明:如图,将△ADB绕点D顺时针旋转60°,得到△CDE,连接BE,
则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.
又∵∠ADC=60°,∴∠BDE=60°,
∴△DBE是等边三角形,
∴BD=BE.
又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,
∴△ECB是直角三角形,
∴BE2=CE2+BC2,即BD2=AB2+BC2.
22. 【答案】
解:将△BPC绕点B逆时针旋转60°得到△BP′A(如图).连接PP′,由旋转的性质知△BPP′为等边三角形,AP′=PC=1,
∴PP′=PB=,∠BPP′=∠BP′P=60°.
在△APP′中,∵AP′2+PP′2=12+()2=22=PA2,
∴△APP′是直角三角形,且∠AP′P=90°,
∴∠BP′A=∠BP′P+∠AP′P=60°+90°=150°,
∴∠BPC=∠BP′A=150°.
在Rt△APP′中,∵PA=2,AP′=1,
∴∠APP′=30°.
又∵∠BPP′=60°,
∴∠APB=90°,
∴在Rt△ABP中,AB===,
即等边三角形ABC的边长为.