人教版 九年级九年级数学 23.2 中心对称 突破训练
一、选择题
1. 如图所示电视台的台标中,是中心对称图形的是( )
2. 如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是( )
A.点A与点D是对称点 B.BO=EO
C.∠ACB=∠FDE D.AB∥DE
3. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
4. 如图,在△ABC中,AB=AC,△ABC与△FEC关于点C对称,连接AE,BF,当∠ACB=______时,四边形ABFE为矩形( )
A.90° B.60° C.45° D.30°
5. 若点A(-3,2)关于原点的对称点是点B,点B关于x轴的对称点是点C,则点C的坐标是( )
A.(3,2) B.(-3,2)
C.(3,-2) D.(-2,3)
6. 把△ABC各点的横坐标都乘-1,纵坐标都乘-1,符合上述要求的图是( )
7. 若点P(-a,a-3)关于原点对称的点是第二象限内的点,则a满足( )
A.a>3 B.0<a≤3
C.a<0 D.a<0或a>3
8. 如图,两个半圆分别以P,O为圆心,它们成中心对称,点A1,P,B1,B2,O,A2在同一条直线上,则对称中心为( )
A.A2P的中点 B.A1B2的中点
C.A1O的中点 D.PO的中点
9. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1对称,再作△B2A3B3与△B2A2B1关于点B2对称……如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )
A.(4n-1,) B.(2n-1,)
C.(4n+1,) D.(2n+1,)
10. 如图示,在Rt△ABC中,∠ACB=90°.P是半圆AC的中点,连接BP交AC于点D.若半圆所在圆的圆心为O,点D,E关于圆心O对称,则图两个阴影部分的面积S1,S2之间的关系是( )
A.S1<S2 B.S1>S2 C.S1=S2 D.不确定
二、填空题
11. 王老师、杨老师两家所在的位置关于学校对称.如果王老师家距学校2千米,那么他们两家相距________千米.
12. 点P(1,2)关于原点的对称点P′的坐标为__________.
13. 如图所示,在△ABC中,已知∠ACB=90°,AC=BC=2.若以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,则BB′=________.
14. 如图,直线a,b垂直相交于点O,曲线C是以点O为对称中心的中心对称图形,点A的对称点是点A′,AB⊥a于点B,A′D⊥b于点D.若OB=3,OD=2,则阴影部分的面积为________.
15. 如图,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是________.
16. 2019·呼和浩特 已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若点A的坐标为(2,),则点B与点D的坐标分别为( )
A.(-2,),(2,-)
B.(-,2),(,-2)
C.(-,2),(2,-)
D.(-,),(,-)
17. 如果将点P绕定点M旋转180°后与点Q重合,那么点P与点Q关于点M对称,定点M叫做对称中心,此时,M是线段PQ的中点.如图3,在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0),点P1,P2,P3,…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称……且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2020的坐标为________.
三、解答题
18. 如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
19. 如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
(1)试判断△BEC是不是等腰三角形,并说明理由;
(2)在原图中画△FCE,使它与△BEC关于CE的中点O中心对称,此时四边形BCFE是什么特殊平行四边形?请说明理由.
20. 如图,在正方形网格中,△ABC的三个顶点都在格点上,点A,B,C的坐标分别为(-2,4),(-2,0),(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O对称的△A1B1C1;
(2)平移△ABC,使点A移动到点A2(0,2)的位置,画出平移后的△A2B2C2,并写出点B2,C2的坐标;
(3)在△ABC,△A1B1C1中,△A2B2C2与________成中心对称,其对称中心的坐标为________.
21. 如图,△ABO与△CDO关于点O中心对称,点E,F在线段AC上,且AF=CE.求证:DF=BE.
22. [材料阅读]在平面直角坐标系中,以任意两点P(x1,y1),Q(x2,y2)为端点的线段的中点坐标为.
[运用](1)已知点A(-2,1)和点B(4,-3),则线段AB的中点坐标是________;已知点M(2,3),线段MN的中点坐标是(-2,-1),则点N的坐标是________.
(2)已知平面上四点A(0,0),B(10,0),C(10,6),D(0,6).直线y=mx-3m+2将四边形ABCD分成面积相等的两部分,则m的值为________.
(3)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D,可使以点A,B,C,D为顶点的四边形为平行四边形,求点D的坐标.
人教版 九年级九年级数学 23.2 中心对称 突破训练-答案
一、选择题
1. 【答案】A
2. 【答案】C [解析] 根据旋转的性质可知,点A与点D是对称点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选C.
3. 【答案】D
4. 【答案】B [解析] ∵△ABC与△FEC关于点C对称,∴AC=FC,BC=EC,
∴四边形ABFE是平行四边形.
当AC=BC时,四边形ABFE是矩形,
∴BC=AC=AB,∴∠ACB=60°.
故选B.
5. 【答案】A
6. 【答案】C
7. 【答案】C [解析] 点P(-a,a-3)关于原点对称的点的坐标为(a,3-a).∵点(a,3-a)在第二象限内,∴解得a<0.
8. 【答案】D [解析] 因为P,O是对称点,所以PO的中点是对称中心.
9. 【答案】C [解析] A1(1,),A2(3,-),A3(5,),A4(7,-),…,
∴点An的坐标为
∵2n+1是奇数,∴点A2n+1的坐标是(4n+1,).故选C.
10. 【答案】C [解析] ∵P是半圆AC的中点,∴半圆关于直线OP对称,且点D,E关于圆心O对称,因而S1,S2在直径AC上面的部分面积相等.∵OD=OE,∴CD=AE.∵△CDB的底边CD与△AEB的底边AE相等,高相同,∴它们的面积相等,∴S1=S2.
二、填空题
11. 【答案】4 [解析] ∵王老师、杨老师两家所在的位置关于学校对称,
∴王老师、杨老师两家到学校的距离相等.
∵王老师家距学校2千米,
∴他们两家相距4千米.
故答案为4.
12. 【答案】(-1,-2)
13. 【答案】2 [解析] ∵△ABC绕AC的中点O旋转了180°,
∴OB=OB′,∴BB′=2OB.
又∵OC=OA=AC=1,BC=2,
∴在Rt△OBC中,OB===,
∴BB′=2OB=2 .
14. 【答案】6 [解析] 如图,过点A′作A′B′⊥a,垂足为B′,由题意可知,①与②关于点O中心对称,所以阴影部分的面积可以看作四边形A′B′OD的面积.又A′D⊥b于点D,直线a,b互相垂直,可得四边形A′B′OD是矩形,所以其面积为3×2=6.
15. 【答案】(-2 ,-2) [解析] 过点B作BH⊥y轴于点H,如图.∵△OAB为等边三角形,A(0,4),∴OH=AH=2,∠BOA=60°,∴BH=OH=2 ,∴点B的坐标为(2 ,2).∵将△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(-2 ,-2).
16. 【答案】B
17. 【答案】(1,-3) [解析] 由题意可得点P2(1,-1),P3(-1,3),P4(1,-3),P5(1,3),P6(-1,-1),P7(1,1),可知6个点一个循环,2020÷6=336……4,故点P2020的坐标与点P4的坐标相同,为(1,-3).
三、解答题
18. 【答案】
解:(1)∵点D和点D1是对称点,
∴对称中心是线段DD1的中点,
∴对称中心的坐标是(0,).
(2)B(-2,4),C(-2,2),B1(2,1),C1(2,3).
19. 【答案】
解:(1)△BEC是等腰三角形.
理由:∵在矩形ABCD中,AD∥BC,
∴∠DEC=∠BCE.
∵EC平分∠BED,∴∠DEC=∠BEC,
∴∠BEC=∠BCE,∴BC=BE,
∴△BEC是等腰三角形.
(2)连接BO并延长至点F,使OF=OB,连接FE,FC,△FCE即为所求.四边形BCFE是菱形.理由:
∵OB=OF,OE=OC,
∴四边形BCFE是平行四边形.
又∵BC=BE,
∴?BCFE是菱形.
20. 【答案】
解:(1)△ABC关于原点O对称的△A1B1C1如图所示.
(2)平移后的△A2B2C2如图所示,其中点B2的坐标为(0,-2),点C2的坐标为(-2,-1).
(3)△A1B1C1 (1,-1)
21. 【答案】
证明:∵△ABO与△CDO关于点O中心对称,
∴BO=DO,AO=CO.
∵AF=CE,∴AO-AF=CO-CE,
即FO=EO.
在△FOD和△EOB中,
∴△FOD≌△EOB(SAS),
∴DF=BE.
22. 【答案】
解:(1)(1,-1) (-6,-5)
(2)
(3)设点D的坐标为(x,y).
若以AB为对角线,AC,BC为邻边的四边形为平行四边形,则AB,CD的中点重合,
∴解得
若以BC为对角线,AB,AC为邻边的四边形为平行四边形,则AD,BC的中点重合,
∴
解得
若以AC为对角线,AB,BC为邻边的四边形为平行四边形,则BD,AC的中点重合,
∴
解得
综上可知,点D的坐标为(1,-1)或(5,3)或(-3,5).