第五章
二元一次方程组
5.2
求解二元一次方程组
第2课时
加减法
一、学情分析
在学习本节之前,学生已经掌握了有理数、合并同类项、去括号等法则,能熟练的进行简单的整式的加、减法运算整式的运算,知道方程的解的意义,能熟练的求解一元一次方程,了解了二元一次方程以及解的意义、二元一次方程组及其解的意义,能通过代人消元法求解二元一次方程组.
二、教材分析
教科书基于学生对前面解一元一次方程和用代入消元法解二元一次方程组基础之上,提出了本课的具体学习任务:会用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.
《课程标准(2011年版)》把方程与方程组的重点放在解法和应用上,特别强调体会方程是刻画现实世界数量关系的有效模型,如何解方程与方程组时方程与方程组教学的主体和重点.对于二元一次方程组来讲,强调“消元”的思想和方法,应是贯穿于始终的一条主线,通过“消元”,将二元一次方程转化为一元一次方程实现求解的目的,体现了化繁为简,以简驭繁的基本策略,对促进了学生理性思维的发展具有重要意义.通过第一课时是学习,学生已经能够解一般的二元一次方程组,但对于有些方程用代人消元法解可能比较繁杂,用加减消元法要简单一些,因此这个课时就进一步学习二元一次方程组的加减消元法.
三、教学目标
(1)会用加减消元法解二元一次方程组.
(2)进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
(3)
选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.
四、教学重难点
教学重点:用加减消元法解二元一次方程组.
教学难点:在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.
五、教学过程
第一环节:复习引入
内容:巩固练习,在练习中发现新的解决方法
怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)
学生可能的解答方案1:
解1:把②变形,得:,
③
把③代入①,得:,
解得:y=3.
把y=3代入②,得:
所以方程组的解为
学生可能的解答方案2:
解2:由②得,
③
把5y当做整体将③代入①,得:,
解得:.
把代入③,得:.
所以方程组的解为
(此种解法体现了整体的思想)
学生可能的解答方案3:(观察发现:两个方程中一个含有5y,而另一个是-5y,两者互为相反数)
解3:根据等式的基本性质
方程①+方程②得:,
解得:,
把代入①,解得:,
所以方程组的解为
说明:方法3如果学生想不到,留些时间给学生观察,注意引导学生观察方程中某一未知数的系数,如x的系数或y的系数
引导学生发现方程①和②中的和互为相反数,根据相反数的和为零(方案3)将方程①和②的左右两边相加,然后根据等式的基本性质消去了未知数y,得到了一个关于x的一元一次方程,从而实现了化“二元”为“一元”的目的.
这就是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.
设计意图:通过学生练习、对比、讨论,既巩固了已学的用代入法解二元一次方程组的知识,又在此过程中发现了新的解二元一次方程组的方法——加减消元法.
第二环节:讲授新知
内容1:(教师板书课题)
下面我们就用刚才的方法解下面的二元一次方程组.(教师规范表达解答过程,为学生作出示范)
例1
解下列二元一次方程组(若学生先前的环节接受得好,可以让学生独立完成,教师再跟进讲授)
(1)
分析:观察到方程①、②中未知数x的系数相等,可以利用两个方程相减消去未知数x.
解:②-①,得:,
解得:,
把代入①,得:,
解得:,
所以方程组的解为
解答完本题后,口算检验,让学生养成进行检验的习惯,同时教师需强调以下两点:
(1)注意解此题的易错点是②-①时是,方程左边去括号时注意符号.另外解题时,①-②或②-①都可以消去未知数x,不过在①-②得到的方程中,y的系数是负数,所以在上面的解法中选择②-①;
(2)把代入①或②,最后结果是一样的,但我们通常的做法是将所求出的一个未知数的值代入系数较简单的方程中求出另一个未知数的值.
内容2:跟踪训练:用加减消元法解下列方程组:
(1)
(2)
设计意图:由学生做练习,体会加减消元法的基本特点,熟悉加减消元法的基本步骤,提升学生用加减消元法解二元一次方程组的基本技能,积累解二元一次方程的活动经验.
师生一起分析上面的解答过程,归纳出下面的一些规律:
在方程组的两个方程中,若某个未知数的系数是相反数,则可直接把这两个方程的两边分别相加,消去这个未知数;若某个未知数的系数相等,可直接把这两个方程的两边分别相减,消去这个未知数得到一个一元一次方程,从而求出它的解,这种解二元一次方程组的方法叫做加减消元法,简称加减法)
内容3:例2
解方程组
(先留一定的时间让学生观察此方程组,让学生说明自己观察到方程有什么特点,能不能自己解决此方程组,用什么方法解决?如学生提出用代入消元法,可以让学生先按此法完成,然后再问能不能用刚学过的加减消元法解决?让学生讨论尝试,学生可能得到的结论如下)
1.对于用加减消元法解,x、y的系数既不相同也不是相反数,没有办法用加减消元法.
2.是不是可以这样想,将方程组中的方程用等式的基本性质将这个方程组中的x或y的系数化成相等(或互为相反数)的情形,再用加减消元法,达到消元的目的.
3.只要在方程①和方程②的两边分别除以2和3,x的系数不就变成“1”了吗?这样就可以用加减消元法了.
4.不同意3的做法.如果这样做,是可以解决这一问题,但y的系数和常数项都变成了分数,这样解是不是变麻烦了吗?那还不如用代入消元法了.不如找x的系数2和3的最小公倍数6,在方程①两边同乘以3,得③,在方程②两边同乘以2,得④,然后③-④,就可以将x消去,得,把代入①得,.所以方程组的解为
(在引导的过程中,肯定学生的好的想法.)其实在我们学习数学的过程中,二元一次方程组中未知数的系数不一定刚好是1或-1,或同一个未知数的系数刚好相同或相反.我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.
解:①×3,得:,
③
②×2,得:,
④
③-④,得:.
将代入①,得:.
所以原方程组的解是
内容4:思考
根据上面几个方程组的解法,请同学们思考下面两个问题:
(1)加减消元法解二元一次方程组的基本思路是什么?
(2)用加减消元法解二元一次方程组的主要步骤有哪些?
(由学生分组讨论、总结并请学生代表发言)
[师生共析]
(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.
(2)用加减法解二元一次方程组的一般步骤是:
①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然后分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.
②加减消元,得到一个一元一次方程.
③解一元一次方程.
④把求出的未知数的解代入原方程组中的任一方程,求出另一个未知数的值,从而得方程组的解.
第三环节:当堂检测
1.二元一次方程组的解是
.
2.方程组的解是
.
3.已知,求
m+n和m-n
的值.
4.,求x,y的值.
第四环节:课堂小结
1.解二元一次方程组的基本思路是什么?
2.解二元一次方程组有哪些方法?
3.本节课你还有哪些收获?
第五环节:布置作业
1.必做题
知识技能1,数学理解2
2.选做题
数学理解3
1
②
①
②