(共22张PPT)
自转与公转
(1)上面情景中的转动现象,有什么共同的特征?
(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?
图形的旋转
这个定点称为旋转中心,转动的角称为旋转角。
旋转角
旋转中心
在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
A
o
B
下列现象中属于旋转的有(
)个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2
B.3
C.4
D.5
练习1:
平移和旋转的异同:
1、相同:都是一种运动;运动前后
不改变图形的形状和大小
B
A
C
O
2、不同
运动方向
运动量
的衡量
平移
直线
移动一定距离
旋转
顺时针或
逆时针
转动一定的角度
3.
如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?
B
O
B/
A
A/
在支点O
旋转角为∠AOA/
如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得
到四边形DOEF.
在这个旋转过程中:
(1)旋转中心是什么?
(2)经过旋转,点A、B分别移动到什么位置?
(3)旋转角是什么?
(4)AO与DO的长有什么关系?BO与EO呢?
(5)∠AOD与∠BOE有什么大小关系?
议一议
旋转中心是O
点D和点E的位置
AO=DO,BO=EO
∠AOD=∠BOE
∠AOD和∠BOE都是旋转角
B
A
C
O
D
E
F
思考:图形的旋转是由什么
决定的
?
图形的旋转是由旋转中心、旋转方向和旋转的角度决定。
旋转三要素
实践探究
在硬纸板上,挖一个三角形洞,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC)然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A′B′C′)
,移开硬纸板。
线段OA与OA′有什么关系?∠AOA′与∠BOB′有什么关系?
△ABC与△A′B′C′形状和大小有什么关系?
A
B
C
O
A′
B′
C′
活动3
OA=OA′
∠AOA′=∠BOB′
△ABC≌△A′B′C′
(4)对应点到旋转中心的距离相等.
旋转的基本性质
(1)旋转不改变图形的大小和形状.
(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度
(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.
例1:钟表的分针匀速旋转一周需要60分.
(1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?
(2)分针匀速旋转一周需要60
分,因此旋转20分,分针
旋转的角度为
解:
(1)它的旋转中心是钟表的轴心;
可以看作是一个花瓣连续4次旋转所形成的,每次旋转分别等于720
,
1440
,
2160
,
2880
思考题:香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的?
练习2:本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?
也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度?
还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?
3个
1次
1800
2次
1200
,
2400
5次
600,
1200,
1800,
2400,
3000
3个
1次
600
例2
:如图,?ABC是等边三角形,D是BC上一点,
?ABD经过
旋转后到达?ACE的位置。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过上述旋
转后,点M转到了什么位置?
E
D
C
B
A
M
.
解:(1)旋转中心是A;
(2)旋转了60度;
(3)点M转到了AC的中点位置上.
1.如图,小明坐在秋千上,秋千旋转了80°,请在图中小明身上任意选一点P,利用旋转性质,标出点P的对应点.
练习
P
P′
2.如图,用左面的三角形经过怎样的旋转,可以得到右面的图形?
3.找出图中扳手拧螺母时的旋转中心和旋转角。
O
旋转中心为螺母的中心
旋转角为∠POP′
P
P′
课堂回顾:这节课,主要学习了什么?
在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转
旋转的概念:
旋转的性质:
1、旋转不改变图形的大小和形状.也即是也即是
旋转前后的图形全等
2、任意一对对应点与旋转中心的连线所成的
角度都是旋转角,旋转角相等.
3、对应点到旋转中心的距离相等