人教版数学八年级上册 13.3.1等腰三角形说课稿

文档属性

名称 人教版数学八年级上册 13.3.1等腰三角形说课稿
格式 zip
文件大小 26.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-01 16:32:43

图片预览

文档简介

《13.3.1等腰三角形的性质》说课稿
教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:
一、说教材
本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
二.说教学目标
1.探索并证明等腰三角形的两个性质。
2.能利用性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用。
说重点:探索并证明等腰三角形的性质。
说难点:性质1证明中辅助线的添加和对性质2的理解。
三.说教法
在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。
四.说学法
只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。
五.课标对本节课的要求
   探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。
六.如何利用学案
   是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。
七.说教学过程
(一)知识回顾,导入新课(多媒体出示)
学生独立思考,然后回答。
设计意图:通过问题,了解等腰三角形的相关概念,复习等腰三角形的轴对称性,为突破教学难点(探究及证明等腰三角形的性质)做铺垫,分解教学难度。
(二)探究新知
【活动一】动手操作
如图,把一张长方形的纸按图中虚线对折后,剪去阴影部分,再把它展开,得到的三角形有什么特点。它是轴对称图形吗?
②折叠过程中重合的线段和角有哪些?
小组讨论、探究。
教师指导学生折叠、剪纸。
教师重点关注:
1.学生操作过程的主动性与积极性;
2.
学生的合作意识及结果的正确性。
3.能否发现三角形的特点。
填表:
根据表格所填内容,学生尝试总结等腰三角的性质。
角:①∠B=∠C
→两个底角相等
②∠ADB=∠ADC
→AD是底边BC上的高
③∠BAD=∠CDA
→AD为顶角∠BAC的平分线。
边:④BD=CD
→AD为底边BC上的中线
由此总结等腰三角形的两个性质。
设计意图:通过实验激发学生求知欲,调动学生参与教学的积极性。经历自己去操作、实验、发现的过程,认识数形结合的美妙,体验成功的喜悦。学生养成乐于思考,善于观察,总结的学习品质和归纳、概括能力及语言表达能力。
[活动二]小组讨论
如何证明等腰三角形性质1
学生分析性质1的条件和结论,并转化为数学符号
已知:如图△ABC中,AB=AC
求证:∠B=∠C
在教师的引导下,得出由添加辅助线的方法来构造两个全等的三角形,来证明∠B=∠C
经过讨论,总结得出三种作辅助线构造两个三角形全等的方法:
(1)
作底边上的中线
(2)
作顶角的角平分线
(3)
作底边上的高线
老师在多媒体上展示证明过程并讲解。
教师强调:(1)三种辅助线的添加方法要选最简单的方法;(2)利用性质1的前提是“在一个三角形中”。
设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。
【活动三】小组讨论
如何证明等腰三角形性质2.
学生分析性质2的条件和结论,并转化为数学符号。
思考:
由△BAD

△CAD,除了可以得到∠
B=
∠C之外,你还可以得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?
学生由全等三角形对应角相等,对应边相等。得到∠BAD=∠CDA,∠ADB=∠ADC,从而AD⊥BC。由BD=DC得到AD为△ABC的中线,这也就证明了性质2.
教师引导学生从以上证明发现等腰三角形的对称轴就是底边上的中线(顶角的角平分线、底边上的高)所在的直线。
设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。学生积极参与,各抒己见。培养学生的合作意识,以及观察、思考、分析问题的能力.
【活动四】应用新知,体验成功
例1.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
     
在老师的引导下小组讨论,交流。
师生共同批改各小组的解题过程,之后老师在黑板上展示正确的解题过程。
设计意图:培养学生正确运用所学知识的应用能力.并能综合运用所学知识解决问题.对性质1、2进行巩固运用,渗透方程思想、分类思想等数学思想方法,提高学生运用所学知识解决问题的能力。
(三)跟踪训练,学以致用(学案)
学生独立思考并回答
设计意图:对本节课的教学效果进行检测,激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验机会,并为不同程度的学生提供充分展示自己的机会。
(四)课堂小结
通过本节课的学习,谈谈自己的收获!
教师重点关注:
①归纳、总结能力;
②不同层次的学生对本节知识的认识程度;
③辅助线的添加方法。
设计意图:学会总结、反思.
(五)作业安排:课本第81页习题 第1题
板书设计:      13.3.1等腰三角形
      
性质1:等边对等角     例1:
      
性质2:三线合一
教学反思:在本节教学中,我始终坚持以学生为主体,教师为主导,师生互动,学生互动,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展。