专题:勾股定理与等腰三角形综合
学生姓名:
年级:
科目:
得分:
练习内容
必会拓展等腰三角形的分类讨论:当腰长或底边长不确定时,需进行分类讨论。(题目指代不清)当顶角或底角不确定时,需进行分类讨论。(题目指代不清)当高的位置不确定时,需进行分类讨论。(不确定三角形的类型)由腰的垂直平分线引起的分类讨论。【随堂练习】1.已知等腰三角形的一个外角等于150°,则它的各个内角分别为
。2.
若等腰三角形的一个角为70°,则顶角为
3.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为
.4.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为
.5.
等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角为(
)(A)40°
(B)50°
(C)40°或130°
(D)50°或130°6.
等腰三角形一腰的中线把它周长分成了15与21两部分,则它的底边长为(
)(A)8
(B)16 (C)8或16 (D)以上都不对7.在3×3网格中,网格线的交点称为格点。已知A、B是两个格点,如果点C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )(A)6
(B)7
(C)8
(D)9
8.如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P是直线OB上的点,要使点P,M,N构成等腰三角形的点P有
个.新课内容:【例】如图,△ABC中,∠C=90°,AB=5cm,BC=3cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒,问t为多少秒时,△BCP为等腰三角形.【变式】1.在△ABC中,∠C=90°,AC=8cm,BC=6cm.动点P从点C开始按C→A→B→C的路径绕△ABC的边运动一周,速度为每秒2cm,运动的时间为t秒.当t为多少秒时,△BCP为等腰三角形.2.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;
(2)当t为多少时.△PQB是以BP为底的等腰三角形.3.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.练习一:勾股定理与等腰三角形综合
1.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.
(1)AB=
cm,AB边上的高为
cm;
(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.
2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)当t=2秒时,求PQ的长;
(2)求出发时间为几秒时,△PQB是等腰三角形?
(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
3.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.
(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;
(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.
4.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.
(1)当t=3秒时,求AP的长度(结果保留根号);
(2)当△ABP为等腰三角形时,求t的值;
(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?
练习二:勾股定理与等腰三角形综合
1.学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).
(1)如图①,∠B=∠C,BD=CE,AB=DC.
①求证:△ADE为等腰三角形.
②若∠B=60°,求证:△ADE为等边三角形.
(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点
D
满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)
2.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为2cm/s和lcm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当运动时间t为多少秒时,△PBQ为直角三角形。
3、如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
4.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A?C?B向点B运动,设运动时间为t秒(t>0)
(1)在AC上是否存在点P,使得PA=PB?若存在,求出t的值;若不存在,说明理由;
(2)若点P恰好在△ABC的角平分线上,请求出t的值,说明理由。
5.(12分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒。
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,求t的值。
6.(10分)如图,已知△ABC中,∠B=90°,AB=16,BC=12,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1,点Q从点B开始沿B→C→A方向运动,且速度为每秒2,它们同时出发,设出发的时间为t秒。
(1)出发2秒后,求PQ的长;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间。
7.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.专题:勾股定理与等腰三角形综合
学生姓名:
年级:
科目:
得分:
练习内容
必会拓展等腰三角形的分类讨论:当腰长或底边长不确定时,需进行分类讨论。(题目指代不清)当顶角或底角不确定时,需进行分类讨论。(题目指代不清)当高的位置不确定时,需进行分类讨论。(不确定三角形的类型)由腰的垂直平分线引起的分类讨论。【随堂练习】1.已知等腰三角形的一个外角等于150°,则它的各个内角分别为
。2.
若等腰三角形的一个角为70°,则顶角为
3.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为 80°或40° .4.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为
.5.
等腰三角形一腰上的高与另一腰的夹角为40°,则它的顶角为(
)(A)40°
(B)50°
(C)40°或130°
(D)50°或130°6.
等腰三角形一腰的中线把它周长分成了15与21两部分,则它的底边长为(
)(A)8
(B)16 (C)8或16 (D)以上都不对7.在3×3网格中,网格线的交点称为格点。已知A,B是两个格点,如果点C也是图中的格点,且使得⊿ABC为等腰三角形,则点C的个数是( )(A)6
(B)7
(C)8
(D)98.如图,∠AOB=45°,点M,N在边OA上,OM=3,ON=7,点P是直线OB上的点,要使点P,M,N构成等腰三角形的点P有 3 个.【分析】先求出点M、N到在OB的距离,再根据等腰三角形的判定逐个画出即可.【解答】解:过M作MM′⊥OB于M′,过N作NN′⊥OB于N′,∵OM=3,ON=7,∠AOB=45°,∴MN=4,MM′=OM×sin45°=<4,NN′=ON×sin45°=>4,MH=M′N′=4×sin45°=2<4,所以只有一小两种情况:①以M为圆心,以4为半径画弧,交直线OB于P1、P2,此时△NP1M和△NMP2都是等腰三角形;②作线段MN的垂直平分线,交直线PB于P3,此时△MNP3是等腰三角形,即有3个点P符合,故答案为:3.【点评】本题考查了等腰三角形的判定,能求出符合的所有情况是解此题的关键.新课内容:【例】如图,△ABC中,∠C=90°,AB=5cm,BC=3cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒,问t为多少秒时,△BCP为等腰三角形.【分析】先根据勾股定理计算出AC=4cm,然后分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上得t=3(s),若点P在AB上,则t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=,易得t=(s);当BP=BC=3时,△BCP为等腰三角形,则AP=AB﹣BP=2,易得t=6(s).【解答】解:∵∠C=90°,AB=5cm,BC=3cm,∴AC==4cm,当CP=CB时,△BCP为等腰三角形,若点P在CA上,t=3(s);若点P在AB上,CP=CB=3,作CH⊥AB于H,如图,CH=,在Rt△BCH中,BH==,则PB=2BH=,∴CA+AP=4+5﹣=5.4,此时t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,则BD=CD,∴PD为△ABC的中位线,∴AP=BP,即AP=AB=,∴t=4+=(s);当BP=BC时,△BCP为等腰三角形,即BP=BC=3,∴AP=AB﹣BP=2,∴t=4+2=6(s),综上所述,t为3s或5s或6s或s时,△BCP为等腰三角形.故答案为3秒或5.4秒或6秒或.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了勾股定理和分类讨论的思想.【变式】1.在△ABC中,∠C=90°,AC=8cm,BC=6cm.动点P从点C开始按C→A→B→C的路径绕△ABC的边运动一周,速度为每秒2cm,运动的时间为t秒.则△BCP为等腰三角形时t的值是 3秒或5.4秒或6秒或6.5秒 .【分析】△BCP为等腰三角形时,分点P在边AC和边AB上讨论计算.【解答】解:△BCP为等腰三角形时,当点P在边AC上时,CP=CB,∵CP=6cm,此时t=6÷2=3(秒);当点P在边AB上时.①如图1,CP=CB,作AB边上的高CD,∵AC×BC=AB×CD.∴CD==4.8,在Rt△CDP中,根据勾股定理得,DP==3.6,∴BP=2DP=7.2,∴AP=2.8,∴t=(AC+AP)÷2=(8+2.8)÷2=5.4(秒)②BC=BP,∴BP=6cm,CA+AP=8+10﹣6=12(cm),∴t=12÷2=6(秒);③PB=PC,∴点P在BC的垂直平分线与AB的交点处,即在AB的中点,此时CA+AP=8+5=13(cm),t=13÷2=6.5(秒);综上可知,当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.故答案为:3秒或5.4秒或6秒或6.5秒.【点评】本题考查了等腰三角形的判定,熟练掌握等腰三角形的判定定理是解题的关键.2.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;
(2)当t为多少时.△PQB是以BP为底的等腰三角形.【分析】(1)根据点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位可知,当t=6秒时,DP=6,AQ=3即可画出线段PQ;(2)设时间为t,则在t秒钟,P运动了t个单位,Q运动了t个单位,由题意得
PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)如图所示,由勾股定理得PQ==5;(2)设时间为t,则在t秒钟,P运动了t格,Q运动了t格,由题意得PQ=BQ,即(t﹣t)2+42=(8﹣t)2,解得t=6(秒).答:当t为6秒时.△PQB是以BP为底的等腰三角形.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【解答】解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.【点评】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分情况讨论,注意不要漏解.练习:勾股定理与等腰三角形综合
学生姓名:
年级:
科目:
得分:
练习内容
1.如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB= 50
cm,AB边上的高为
24
cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【分析】(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB?CE=AC?BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.【点评】本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.2.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求出发时间为几秒时,△PQB是等腰三角形?(3)若Q沿B→C→A方向运动,则当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.【分析】(1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;(2)由题意得出BQ=BP,即2t=8﹣t,解方程即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(图2),则BC+CQ=12,易求得t;③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【解答】(1)解:(1)BQ=2×2=4cm,BP=AB﹣AP=8﹣2×1=6cm,∵∠B=90°,PQ===2(cm);(2)解:根据题意得:BQ=BP,即2t=8﹣t,解得:t=;即出发时间为秒时,△PQB是等腰三角形;(3)解:分三种情况:①当CQ=BQ时,如图1所示:则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒.②当CQ=BC时,如图2所示:则BC+CQ=12∴t=12÷2=6秒.③当BC=BQ时,如图3所示:过B点作BE⊥AC于点E,则BE===4.8(cm)∴CE==3.6cm,∴CQ=2CE=7.2cm,∴BC+CQ=13.2cm,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点评】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.3.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.【分析】(1)根据点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,和运动时间t为2秒,分别求出PE、QE,再利用勾股定理即可求出PQ其长度.(2)设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得
PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)∵点Q的运动速度为每秒1个单位,和运动时间t为2秒,运动时间t为2秒,∴由图中可知PQ的位置如下图2,则由已知条件可得PD=4,AQ=2,QE=2,PE=6,∴PQ===2,(2)能.
设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得
PQ=BQ(2t﹣t)2+62=(8﹣t)2解得t=.答:(1)PQ的长为2;(2)能,运动时间t为.【点评】此题主要考查勾股定理和等腰三角形的性质等知识点,此题涉及到动点问题,有一定的拔高难度,属于难题.4.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连结AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D做DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则
2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若PA=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)若P在C点的左侧,CP=16﹣2t.AP=20﹣2t(20﹣2t)2=(16﹣2t)2+82解得:t=5,若P在C点的右侧,CP=2t﹣16.AP=2t﹣12;(2t﹣12)2=(2t﹣16)2+82解得:t=11答:当t为5或11时,能使DE=CD.【点评】本题考查了等腰三角形的性质、勾股定理,解决本题的关键是动点运动到不同位置形成不同的等腰三角形.练习二:勾股定理与等腰三角形综合1.学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点
D
满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)【分析】(1)①先根据∠B=∠C,BD=CE,AB=DC,判定△ABD≌DCE,得出AB=DC,进而得到△ADE为等腰三角形;②根据△ABD≌△DCE,得出∠BAD=∠CDE,再根据∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,得到∠ADE=∠B=60°,最后判定等腰△ADE为等边三角形;(2)分三种情况讨论:∠CPD为直角顶点;∠PCD是直角顶点;∠PDC是直角顶点,分别进行画图即可.第一种情况:使得AP=BD,BP=AC;第二种情况:使得AC=AB,CE=AP,BD=AE;第三种情况:使得BD=AB,DF=BP,AC=BF.【解答】解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:2.如图,△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为2cm/s和lcm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当运动时间t为多少秒时,△PBQ为直角三角形。3、如图,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?4.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A?C?B向点B运动,设运动时间为t秒(t>0)(1)在AC上是否存在点P,使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请求出t的值,说明理由。4.(1)t=t=2或3.5或或5.(12分)已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以lcm/s的速度移动,设运动的时间为t秒。(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值。5.解答:1.
【答案】BC=4cm【解析】在Rt△ABC中,∴BC=4cm2.
【答案】由题意知,BP=t①当∠APB=90°时,点P与点C重合,BP=BC=4,即t=4;②当∠BAP=90°时,BP=t,CP=t-4,AC=3在Rt△ACP中,在Rt△BAP中,,即
解得综上所述:或。3.【答案】①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8,t=8;③当BP=AP时,AP=BP=t,CP=|t-4|,AC=3在Rt△ACP中,,∴
∴综上所述:当t=5或t=8或是,△ABP为等腰三角形。6.(10分)如图,已知△ABC中,∠B=90°,AB=16,BC=12,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1,点Q从点B开始沿B→C→A方向运动,且速度为每秒2,它们同时出发,设出发的时间为t秒。(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间。6.解答:(1)∵BQ=2×2=4(),BP=AB?AP=16?2×1=14(),∠B=90°,∴PQ=;(2)BQ=2t,BP=16?t,根据题意得:2t=16?t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒。②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒。③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则,∴,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒。综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形。7.定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.【分析】(1)根据勾股定理逆定理,即可判断点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=12﹣AM﹣BN=7﹣x,分三种情形①当AM为最大线段时,依题意AM2=MN2+BN2,②当MN为最大线段时,依题意MN2=AM2+NB2,③当BN为最大线段时,依题意BN2=AM2+MN2,分别列出方程即可解决问题.【解答】解:(1)是.理由:∵AM2+BN2=1.52+22=6.25,MN2=2.52=6.25,∴AM2+NB2=MN2,∴AM、MN、NB为边的三角形是一个直角三角形,∴点M、N是线段AB的勾股分割点.(2)设BN=x,则MN=24﹣AM﹣BN=18﹣x,①当MN为最大线段时,依题意MN2=AM2+NB2,即(18﹣x)2=x2+36,解得x=8;②当BN为最大线段时,依题意BN2=AM2+MN2.即x2=36+(18﹣x)2,解得x=10,综上所述,BN=8或10.【点评】本题考查了勾股定理的逆定理的运用,解题的关键是理解题意,学会分类讨论,注意不能漏解,属于中考常考题型.