3.6带电粒子在匀强磁场中的运动-基础课时针对练习
1.(多选)两个粒子电荷量相同,在同一匀强磁场中受磁场力而做匀速圆周运动
( ).
A.若速率相等,则半径必相等
B.若动能相等,则周期必相等
C.若质量相等,则周期必相等
D.若质量与速度的乘积大小相等,则半径必相等
2.处在匀强磁场内部的两个电子A和B分别以速率v和2v垂直于磁场开始运
动,经磁场偏转后,哪个电子先回到原来的出发点( )
A.条件不够无法比较
B.A先到达
C.B先到达
D.同时到达
3.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为Rp和Rα,周期分别为Tp和Tα,下列选项正确的是
( ).
A.Rp∶Rα=1∶2,Tp∶Tα=1∶2
B.Rp∶Rα=1∶1,Tp∶Tα=1∶1
C.Rp∶Rα=1∶1,Tp∶Tα=1∶2
D.Rp∶Rα=1∶2,Tp∶Tα=1∶1
5.粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电荷.让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动.已知磁场方向垂直于纸面向里.则下列四个图中,能正确表示两粒子运动轨迹的是
( ).
6.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )
A.1∶2
B.2∶1
C.1∶
D.1∶1
7.(多选)如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°角,利用以上数据可求出下列物理量中的( )
A.带电粒子的比荷
B.带电粒子在磁场中运动的周期
C.带电粒子的初速度
D.带电粒子在磁场中运动所对应的圆心角
8.如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )
A.a粒子动能最大
B.c粒子速率最大
C.b粒子在磁场中运动时间最长
D.它们做圆周运动的周期Ta9.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场.一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角.若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷
B.,正电荷
C.,负电荷
D.,负电荷
10.半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场沿半径方向射入磁场中,并从B点射出.∠AOB=120°,如图所示,则该带电粒子在磁场中运动的时间为( )
A.
B.
C.
D.
11.如图所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v0从O点垂直射入.已知两板之间距离为d.板长为d,O点是NP板的正中点,为使粒子能从两板之间射出,试求磁感应强度B应满足的条件(已知质子带电荷量为q,质量为m).
12.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图12所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度v0的大小;
(3)粒子从M点运动到P点的总时间t.
3.6带电粒子在匀强磁场中的运动-基础课时针对练习答案
1.(多选)两个粒子电荷量相同,在同一匀强磁场中受磁场力而做匀速圆周运动
( ).
A.若速率相等,则半径必相等
B.若动能相等,则周期必相等
C.若质量相等,则周期必相等
D.若质量与速度的乘积大小相等,则半径必相等
解析:因为粒子在磁场中做圆周运动的半径r=,周期T=,又粒子电荷量相同且在同一磁场中,所以q、B相等,r与m、v有关,T只与m有关,所以C、D正确.
答案 CD
2.处在匀强磁场内部的两个电子A和B分别以速率v和2v垂直于磁场开始运
动,经磁场偏转后,哪个电子先回到原来的出发点( )
A.条件不够无法比较
B.A先到达
C.B先到达
D.同时到达
解析:由周期公式T=可知,运动周期与速度v无关.两个电子各自经过一个周期又回到原来的出发点,故同时到达,选项D正确.
答案:D
3.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为Rp和Rα,周期分别为Tp和Tα,下列选项正确的是
( ).
A.Rp∶Rα=1∶2,Tp∶Tα=1∶2
B.Rp∶Rα=1∶1,Tp∶Tα=1∶1
C.Rp∶Rα=1∶1,Tp∶Tα=1∶2
D.Rp∶Rα=1∶2,Tp∶Tα=1∶1
解析 由qvB=,有R=,而mα=4mp,qα=2qp,故Rp∶Rα=1∶2,又T=,故Tp∶Tα=1∶2.故A正确.
答案 A
5.粒子甲的质量与电荷量分别是粒子乙的4倍与2倍,两粒子均带正电荷.让它们在匀强磁场中同一点以大小相等、方向相反的速度开始运动.已知磁场方向垂直于纸面向里.则下列四个图中,能正确表示两粒子运动轨迹的是
( ).
解析 由洛伦兹力和牛顿第二定律可得r甲=,r乙=,故=2,且由左手定则对其运动的方向判断可知A正确.
答案 A
6.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )
A.1∶2
B.2∶1
C.1∶
D.1∶1
答案 B
解析 如图所示,粗略地画出正、负电子在第一象限的匀强磁场中的运动轨迹.由几何关系知,正电子轨迹对应的圆心角为120°,运动时间为t1=,其中T1为正电子运动的周期,由T=及qvB=知T1=;同理,负电子在磁场中运动的周期T2=T1=,但由几何关系知负电子在磁场中转过的圆心角为60°,故在磁场中运动时间t2=.所以正、负电子在磁场中运动的时间之比为==,故B选项正确.
7.(多选)如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t.若加上磁感应强度为B、水平向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出时偏离原方向60°角,利用以上数据可求出下列物理量中的( )
A.带电粒子的比荷
B.带电粒子在磁场中运动的周期
C.带电粒子的初速度
D.带电粒子在磁场中运动所对应的圆心角
答案 ABD
解析 由带电粒子在磁场中运动的偏向角,可知带电粒子运动轨迹所对的圆心角为60°,因此由几何关系得l=Rsin
60°,又由Bqv0=m得R=,故l=sin
60°,又未加磁场时有l=v0t,所以可求得比荷=,故A、D正确;根据周期公式T=可得带电粒子在磁场中运动的周期T==·=,故B正确;由于半径未知,所以初速度无法求出,C错误.
8.如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )
A.a粒子动能最大
B.c粒子速率最大
C.b粒子在磁场中运动时间最长
D.它们做圆周运动的周期Ta答案 B
解析 三个质量和电荷量都相同的带电粒子,以不同的速率垂直进入匀强磁场中,则运动半径的不同,导致运动轨迹也不同.因此运动轨迹对应的半径越大,则粒子的速率也越大.而运动周期相同,运动时间由圆弧对应的圆心角决定.
粒子在磁场中做匀速圆周运动,故洛伦兹力提供向心力则有Bqv=m,R=.由于带电粒子的B、q、m均相同,所以R与v成正比,因此轨迹圆弧半径越大,则运动速率越大,由题图知c粒子速率最大,A错误,B正确.粒子运动周期为T=,由于带电粒子的B、q、m均相同,所以周期相同,则轨迹圆弧对应的圆心角越大,则运动时间越长,由题图知a粒子在磁场中运动的时间最长,故ta>tb>tc,C、D错误,故选B.
9.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场.一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角.若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷
B.,正电荷
C.,负电荷
D.,负电荷
解析:粒子能穿过y轴的正半轴,所以该粒子带负电荷,其运动轨迹如图所示,A点到x轴的距离最大,为R+R=a,又R=,得=,故C正确.
答案:C
10.半径为r的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A点以速度v0垂直于磁场沿半径方向射入磁场中,并从B点射出.∠AOB=120°,如图4所示,则该带电粒子在磁场中运动的时间为( )
A.
B.
C.
D.
答案 A
解析 由题图可知,粒子转过的圆心角为60°,R=r转过的弧长为l=×2πR==πr,则运动所用时间t==
11.如图所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v0从O点垂直射入.已知两板之间距离为d.板长为d,O点是NP板的正中点,为使粒子能从两板之间射出,试求磁感应强度B应满足的条件(已知质子带电荷量为q,质量为m).
解析 如图所示,由于质子在O点的速度垂直于板NP,所以粒子在磁场中做圆周运动的圆心O′一定位于NP所在的直线上.如果直径小于ON,则轨迹将是圆心位于ON之间的一段半圆弧.
(1)如果质子恰好从N点射出,R1=,qv0B1=.所以B1=.
(2)如果质子恰好从M点射出
R-d2=(R2-)2,qv0B2=m,得B2=.
所以B应满足≤B≤.
答案 ≤B≤
12.在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图12所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度v0的大小;
(3)粒子从M点运动到P点的总时间t.
答案 (1)d (2) (3)
解析 (1)作出带电粒子的运动轨迹如图所示
由三角形相关知识得Rsin
θ=d
解得R=d
(2)由qvB=mv2
/R得v=
在N点速度v与x轴正方向成θ=60°角射出电场,将速度分解如图所示
cos
θ=得射出速度v=2v0,
解得v0=
(3)设粒子在电场中运动的时间为t1,有d=v0t1
所以t1==
粒子在磁场中做匀速圆周运动的周期T=
设粒子在磁场中运动的时间为t2,有t2=T
所以t2=
t=t1+t2,所以t=