名称 | 人教版数学九年级上册25.3用频率估计概率课件(32张) | | |
格式 | zip | ||
文件大小 | 1.3MB | ||
资源类型 | 教案 | ||
版本资源 | 人教版 | ||
科目 | 数学 | ||
更新时间 | 2020-12-03 11:53:31 |
如果A为随机事件(不确定事件),
那么0
用列举法求概率的条件:
(1)实验的所有结果是有限个(n)
(2)各种结果的可能性相等.
当实验的所有结果不是有限个;或各种可能结果发生的可能性不相等时.又该如何求事件发生的概率呢?
用频率估计概率
学习目标
过程与方法
当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
知识与能力
会通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,理解频率与概率的联系与区别,能根据频率的集中趋势估计概率。
通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。在活动中进一步发展合作交流的意识和能力。
情感态度与价值观
教学重难点
教学重点
理解当试验次数较大时,试验频率稳定于理论概率。
教学难点
对概率的理解。
则估计抛掷一枚硬币正面朝上的概率为__
0.5
一、
探索新知
:事件发生的概率与事件发生的频率有什么联系和区别?
数学史话
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.
由频率可以估计概率是由瑞士数学家雅各布·伯努利(1654-1705)最早阐明的,因而他被公认为是概率论的先驱之一.
频率稳定性定理
归纳:
一般地,在大量重复试验中,如果某事件A发生的频率
稳定在某个常数p附近,那么事件A的概率P(A)=P.
m
n
二、典例剖析:例1.某种油菜籽在相同条件下的发芽试验结果表:
当试验的油菜籽的粒数很多时,油菜籽发芽的频率
接近于常数0.9,于是我们说它的概率是0.9。
例2.
对某电视机厂生产的电视机进行抽样检测的数据如下:
抽取台数
50
100
200
300
500
1000
优等品数
40
92
192
285
478
954
(1)计算表中优等品的各个频率;
(2)该厂生产的电视机优等品的概率是多少?
0.8
0.92
0.96
0.95
0.956
0.954
概率是0.9
频率
三、知识应用:练习1,某射击运动员在同一条件下练习射击,结果如下表所示:
射击次数n
10
20
50
100
200
500
击中靶心次数m
8
19
44
92
178
452
击中靶心频率m/n
(1)计算表中击中靶心的各个频率并填入表中.
(2)这个运动员射击一次,击中靶心的概率多少
0.8
0.95
0.88
0.92
0.89
0.94
0.9
在相同情况下随机的抽取若干个体进行实验,进行实验统计,并计算事件发生的
频率
,根据频率估计该事件发生的概率.
当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.
知识归纳
某林业部门要考察某种幼树在一定条件的移植成活率,应该用什么具体做法?
问题1
某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(去掉坏的),每千克大约定价为多少元?
问题2
上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等,
事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.
应该如何做呢?翻到课本143页.
分析:
幼苗移植成活率是实际问题中的一种概率。这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计。
在同样条件下,大量地对这种幼苗进行移植,并统计成活情况,计算成活的频率。如果随着移植棵数n的越来越大,频率
越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值。
下表是一张模拟的统计表,请填出表中的空缺,并完成表后的填空。
某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法?
观察在各次试验中得到的幼树成活的频率,谈谈你的看法.
估计移植成活率
移植总数(n)
成活数(m)
10
8
成活的频率
0.8
(
)
50
47
270
235
0.870
400
369
750
662
1500
1335
0.890
3500
3203
0.915
7000
6335
9000
8073
14000
12628
0.902
0.94
0.923
0.883
0.905
0.897
是实际问题中的一种概率,
可理解为成活的概率.
估计移植成活率
由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为__.
0.9
0.9
移植总数(n)
成活数(m)
10
8
成活的频率
0.8
(
)
50
47
270
235
0.870
400
369
750
662
1500
1335
0.890
3500
3203
0.915
7000
6335
9000
8073
14000
12628
0.902
0.94
0.923
0.883
0.905
0.897
由下表可以发现,幼树移植成活的频率在__左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为__.
0.9
0.9
移植总数(n)
成活数(m)
10
8
成活的频率
0.8
(
)
50
47
270
235
0.870
400
369
750
662
1500
1335
0.890
3500
3203
0.915
7000
6335
9000
8073
14000
12628
0.902
0.94
0.923
0.883
0.905
0.897
1.林业部门种植了该幼树1000棵,估计能成活_______棵.
2.我们学校需种植这样的树苗500棵来绿化校园,则至少向林业部门购买约_____棵.
900
556
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率(
)
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
完成下表,
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
某水果公司以2元/千克的成本新进了10
000千克柑橘,如果公司希望这些柑橘能够获得利润5
000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?
利用你得到的结论解答下列问题:
根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率(
)
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?
完成下表,
利用你得到的结论解答下列问题:
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1
000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.
310
270
2.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5
000名中学生,并在调查到1
000名、2
000名、3
000名、4
000名、5
000名时分别计算了各种颜色的频率,绘制折线图如下:
四、效果反馈
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10
000名同学时,红色的频率是多少吗?
估计调查到10
000名同学时,红色的频率大约仍是40%左右.
随着调查次数的增加,红色的频率基本稳定在40%左右.
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:1:2
.
3.如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有100次是落在不规则图形内.
【拓展】
你能设计一个利用频率估计概率的实验方法估算该不规则图形的面积的方案吗?
(1)你能估计出掷中不规则图形的概率吗?
(2)若该长方形的面积为150,试估计不规则
图形的面积.
了解了一种方法-----用多次试验频率
去估计概率
体会了一种思想:
用样本去估计总体
用频率去估计概率
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
小华和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?为什么?
3m
2m
一个学习校小组有6名男生3名女生。老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗?
从表可以发现,幼苗移植成活的频率在(
)左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计幼树移植成活的概率为(
)。
0.9
0.9
课堂小结
概率:
事件发生的可能性,也称为事件发生的概率.
必然事件发生的概率为1(或100%),
记作P(必然事件)=1;
不可能事件发生的概率为0,
记作P(不可能事件)=0;
随机事件(不确定事件)发生的概率介于0~1之间,即0
如果A为随机事件(不确定事件),
那么0
当试验次数很大时,一个事件发生频率也稳定在相应的概率附近.因此,我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.