北师大版九年级数学上学期 1.1 菱形的性质与判定 同步练习(Word版 含答案)

文档属性

名称 北师大版九年级数学上学期 1.1 菱形的性质与判定 同步练习(Word版 含答案)
格式 zip
文件大小 141.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-12-03 16:35:42

图片预览

文档简介

1.1
菱形的性质与判定
一.选择题
1.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是(  )
A.△ABD与△ABC的周长相等
B.△ABD与△ABC的面积相等
C.菱形的周长等于两条对角线之和的两倍
D.菱形的面积等于两条对角线之积的两倍
2.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为(  )
A.16a
B.12a
C.8a
D.4a
3.如图,下列条件之一能使平行四边形ABCD是菱形的为(  )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A.①③
B.②③
C.③④
D.①②③
4.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是(  )
A.BA=BC
B.AC、BD互相平分
C.AC=BD
D.AB∥CD
5.用两个边长为a的等边三角形纸片拼成的四边形是(  )
A.等腰梯形
B.正方形
C.矩形
D.菱形
6.顺次连接对角线相等的四边形各边中点所组成的四边形是(  )
A.正方形
B.矩形
C.菱形
D.等腰梯形
7.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是(  )
A.矩形
B.菱形
C.正方形
D.等腰梯形
8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是(  )
A.16
B.16
C.8
D.8
9.如果菱形的边长是a,一个内角是60°,那么菱形较短的对角线长等于(  )
A.a
B.a
C.a
D.a
二.填空题
10.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是 
 .
11.已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是 
 (答案不唯一).
三.解答题
12.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
13.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.
14.如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.
15.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
16.如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?
17.如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.
18.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
19.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.
(1)求证:DE=EF;
(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.
20.如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
(1)求证:四边形EFCD是菱形;
(2)设CD=4,求D、F两点间的距离.
参考答案
一.选择题
1.
B.
2.
C.
3.
A.
4.
B.
5.
D.
6.
C.
7.
B.
8.
C.
9.
C.
二.填空题
10.四边形EFGH是菱形.
11.平行四边形ADEF为菱形.
三.解答题
12.(1)证明:∵∠ACB=90°,E是BA的中点,
∴CE=AE=BE,
∵AF=AE,
∴AF=CE,
在△BEC中,∵BE=CE且D是BC的中点,
∴ED是等腰△BEC底边上的中线,
∴ED也是等腰△BEC的顶角平分线,
∴∠1=∠2,
∵AF=AE,
∴∠F=∠3,
∵∠1=∠3,
∴∠2=∠F,
∴CE∥AF,
又∵CE=AF,
∴四边形ACEF是平行四边形;
(2)解:∵四边形ACEF是菱形,
∴AC=CE,
由(1)知,AE=CE,
∴AC=CE=AE,
∴△AEC是等边三角形,
∴∠CAE=60°,
在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.
13.(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,
∴∠A=∠B=∠D=∠E=45°.
在△BCF和△ECH中,,
∴△BCF≌△ECH(ASA),
∴CF=CH(全等三角形的对应边相等);
(2)解:四边形ACDM是菱形.
证明:∵∠ACB=∠DCE=90°,∠BCE=45°,
∴∠1=∠2=45°.
∵∠E=45°,
∴∠1=∠E,
∴AC∥DE,
∴∠AMH=180°﹣∠A=135°=∠ACD,
又∵∠A=∠D=45°,
∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),
∵AC=CD,
∴四边形ACDM是菱形.
14.证明:∵点D,E,F分别是BC,AB,AC的中点,
∴DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
又∵AD⊥BC,BD=CD,
∴AB=AC,
∴AE=AF,
∴平行四边形AEDF是菱形.
15.(1)证明:由题意知∠FDC=∠DCA=90°,
∴EF∥CA,
∴∠FEA=∠CAE,
∵AF=CE=AE,
∴∠F=∠FEA=∠CAE=∠ECA.
在△AEC和△EAF中,

∴△EAF≌△AEC(AAS),
∴EF=CA,
∴四边形ACEF是平行四边形.
(2)解:当∠B=30°时,四边形ACEF是菱形.
理由如下:∵∠B=30°,∠ACB=90°,
∴AC=AB,
∵DE垂直平分BC,
∴∠BDE=90°
∴∠BDE=∠ACB
∴ED∥AC
又∵BD=DC
∴DE是△ABC的中位线,
∴E是AB的中点,
∴BE=CE=AE,
又∵AE=CE,
∴AE=CE=AB,
又∵AC=AB,
∴AC=CE,
∴四边形ACEF是菱形.
16.解:是菱形.
理由如下:∵PE⊥AB,PF⊥AD,且PE=PF,
∴AC是∠DAB的角平分线,
∴∠DAC=∠CAE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠DCA=∠CAB,
∴∠DAC=∠DCA,
∴DA=DC,
∴平行四边形ABCD是菱形.
17.证明:∵AC=AD,AF是CD边上的中线,
∴∠AFC=90°,
∴∠ACF+∠CAF=90°,
∵∠ACF+∠PCA=90°,
∴∠PCA=∠CAF,
∴PC∥AQ,
同理:AP∥QC,
∴四边形APCQ是平行四边形.
∵AF∥CP,AE∥CQ,
∴∠EPC=∠PAF=∠FQC,
∵AB=AC,AE平分∠BAC,
∴CE=BE=CB(等腰三角三线合一),
∵AF是CD边上的中线,
∴CF=CD,
∵CB=DC,
∴CE=CF,
∵PC⊥CD,QC⊥BC,
∴∠ECP+∠PCQ=∠QCF+∠PCQ=90°,
∴∠PCE=∠QCF,
∴△PEC≌△QFC(AAS),
∴PC=QC,
∴四边形APCQ是菱形.
18.(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD.
∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.
∴CG⊥AD.
∴∠AEB=∠CGD=90°.
∵AE=CG,
∴Rt△ABE≌Rt△CDG(HL).
∴BE=DG;
(2)解:当BC=AB时,四边形ABFG是菱形.
证明:∵AB∥GF,AG∥BF,
∴四边形ABFG是平行四边形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∵BC=AB
∴BE=CF
∴EF=AB
∴AB=BF
∴四边形ABFG是菱形,
19.证明:(1)∵DE∥BC,CF∥AB,
∴四边形DBCF为平行四边形,
∴DF=BC,
∵D为边AB的中点,DE∥BC,
∴DE=BC,
∴EF=DF﹣DE=BC﹣CB=CB,
∴DE=EF;
(2)∵DB∥CF,
∴∠ADG=∠DGC,
∵∠ACB=90°,D为边AB的中点,
∴CD=DB=AD,
∴∠B=∠DCB,∠A=∠DCA,
∵DG⊥DC,
∴∠DCA+∠1=90°,
∵∠DCB+∠DCA=90°,
∴∠1=∠DCB=∠B,
∵∠A+∠ADG=∠1,
∴∠A+∠DGC=∠B.
20.(1)证明:∵△ABC与△CDE都是等边三角形,
∴ED=CD.
∴∠A=∠DCE=∠BCA=∠DEC=60°.(1分)
∴AB∥CD,DE∥CF.(2分)
又∵EF∥AB,
∴EF∥CD,(3分)
∴四边形EFCD是菱形.(4分)
(2)解:连接DF,与CE相交于点G,(5分)
由CD=4,可知CG=2,(6分)
∴,(7分)
∴.(8分)