人教版 九年级上册数学 23.1 图形的旋转 同步训练(word含答案)

文档属性

名称 人教版 九年级上册数学 23.1 图形的旋转 同步训练(word含答案)
格式 doc
文件大小 735.9KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-03 18:53:39

图片预览

文档简介

人教版 九年级数学 23.1 图形的旋转 同步训练
一、选择题(本大题共10道小题)
1. 把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 (  )
A.30° B.90° C.120° D.180°
2. 观察图,其中可以看成是由“基本图案”通过旋转形成的共有(  )
A.1个 B.2个 C.3个 D.4个
3. 如图,将△OAB绕点O逆时针旋转得到△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,OB=1 cm,∠B′=60°,那么A′B的长是(  )
A.4 cm B.3 cm
C.2 cm D.(4-)cm
4. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是(  )
A.(-1,2) B.(1,4)
C.(3,2) D.(-1,0)
5. 如图,在平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是(  )
图7-ZT-1
A.(-1,2+) B.(-,3)
C.(-,2+) D.(-3,)
6. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为(  )
A.4 B.2
C.6 D.2
7. 如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是(  )
A.AC=AD B.AB⊥EB
C.BC=DE D.∠A=∠EBC
8. 如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是(  )
A.(,-1) B.(1,-)
C.(2,0) D.(,0)
9. 2018·桂林 如图,在正方形ABCD中,AB=3,点M在边CD上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM绕点A按顺时针方向旋转90°得到△ABF,连接EF,则线段EF的长为(  )
A.3 B.2 C. D.
10. 如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为(  )
A.90°-α   B.α   C.180°-α   D.2α
二、填空题(本大题共7道小题)
11. 如图,在平面直角坐标系xOy中,△AOB可以看作是由△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:________________________________________________________________________________________________________________________________________________.

12. 如图,△ABC,△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2 .将△BDE绕点B逆时针旋转后得△BD′E′,当点E′恰好落在线段AD′上时,CE′=________.

13. 如图所示,在Rt△ABC中,∠B=90°,AB=2 ,BC=.将△ABC绕点A逆时针旋转90°得到△AB′C′,连接B′C,则B′C=________.

14. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为________.

15. 如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.

16. 如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF,若AB=3,AC=2,且α+β=∠B,则EF=________.

17. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=________.
三、解答题(本大题共4道小题)
18. 将一副三角尺按图①摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=2 .
(1)求GC的长;
(2)如图②,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,C作AB的垂线,垂足分别为M,N.通过观察,猜想MD与ND的数量关系,并验证你的猜想;
(3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.
19. 已知:如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,AD=CD.
求证:BD2=AB2+BC2.
20. 2019·福建 如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A,B的对应点分别是D,E.
(1)当点E恰好在AC上时,如图①,求∠ADE的度数;
(2)若α=60°,F是边AC的中点,如图②,求证:四边形BEDF是平行四边形.
  
21. (1)如图 (a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.
(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.
人教版 九年级数学 23.1 图形的旋转 同步训练-答案
一、选择题(本大题共10道小题)
1. 【答案】C
2. 【答案】D 
3. 【答案】B [解析] ∵旋转前、后的两个图形是全等图形,AB=4 cm,OB=1 cm,∴A′B′=AB=4 cm,OB′=OB=1 cm.
在△OB′B中,∵∠B′=60°,OB′=OB,
∴△OB′B是等边三角形,∴BB′=OB=1 cm,
∴A′B=A′B′-BB′=4-1=3(cm).
4. 【答案】C 
5. 【答案】B [解析] 如图,过点B′作B′H⊥y轴于点H.
由题意得,OA′=A′B′=2,∠B′A′H=60°,
∴∠A′B′H=30°,
∴AH′=A′B′=1,B′H=,
∴OH=3,∴B′(-,3).
6. 【答案】D [解析] 由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=2 .
∵DE=2,∴在Rt△ADE中,AE==2 .故选D.
7. 【答案】D [解析] 由旋转的性质可知,AC=CD,但∠A不一定是60°,所以不能证明AC=AD,所以选项A错误;因为旋转角度不定,所以选项B不能确定;因为不确定AB和BC的数量关系,所以BC和DE的数量关系不能确定,所以选项C不能确定;由旋转的性质可知∠ACD=∠BCE,AC=DC,BC=EC,所以2∠A=180°-∠ACD,2∠EBC=180°-∠BCE,从而可证选项D是正确的.
8. 【答案】A
9. 【答案】C [解析] 如图,连接BM.
∵△AEM与△ADM关于AM所在的直线对称,
∴AE=AD,∠MAD=∠MAE.
∵△ADM绕点A按顺时针方向旋转90°得到△ABF,
∴AF=AM,∠FAB=∠MAD,
∴∠FAB=∠MAE,
∴∠FAB+∠BAE=∠BAE+∠MAE,
即∠FAE=∠MAB,
∴△FAE≌△MAB(SAS),
∴EF=BM.
∵四边形ABCD是正方形,
∴BC=CD=AB=3.
∵DM=1,
∴CM=2.
∵在Rt△BCM中,BM==,
∴EF=.
10. 【答案】C [解析] 由题意可得∠CBD=α,∠C=∠EDB.
∵∠EDB+∠ADB=180°,
∴∠C+∠ADB=180°.
由四边形的内角和定理,得∠CAD+∠CBD=180°.
∴∠CAD=180°-∠CBD=180°-α.故选C.
二、填空题(本大题共7道小题)
11. 【答案】将△OCD绕点C顺时针旋转90°,再向左平移2个单位长度即可得到△AOB(答案不唯一) 
[解析] 观察图形可知,将△OCD绕点C顺时针旋转90°,再向左平移2个单位长度可得到△AOB(答案不唯一),注意是顺时针旋转还是逆时针旋转.
12. 【答案】+ [解析] 如图,连接CE′,
∵△ABC,△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2 ,
∴AB=BC=2 ,BD=BE=2.
∵将△BDE绕点B逆时针旋转后得△BD′E′,
∴D′B=BE′=BD=2,∠D′BE′=90°,
∠D′BD=∠ABE′,
∴∠ABD′=∠CBE′,
∴△ABD′≌△CBE′(SAS),
∴∠D′=∠CE′B=45°.
过点B作BH⊥CE′于点H,
在Rt△BHE′中,BH=E′H=BE′=,
在Rt△BCH中,CH==,
∴CE′=+.故答案为+.
13. 【答案】5 [解析] 由勾股定理,得AC==5.过点C作CE⊥AB′于点E,则四边形ABCE是矩形,∴AE=BC=.又AB′=AB=2 ,∴AE=EB′=,∴CE垂直平分AB′,∴B′C=AC=5.
14. 【答案】15° [解析] 由旋转的性质可知AB=AD,
∠BAD=150°,∴∠B=∠ADB=×(180°-150°)=15°.
15. 【答案】18 [解析] 如图.∵∠BAD=∠BCD=90°,∴∠B+∠ADC=180°.又∵AB=AD,∴将△ABC绕点A逆时针旋转90°后点B与点D重合,点C的对应点E落在CD的延长线上,∴AE=AC=6,∠CAE=90°,∴S四边形ABCD=S△ACE=AC·AE=×6×6=18.

16. 【答案】 [解析] ∵α+β=∠B,∴∠EAF=∠BAC+∠B=90°,∴△AEF是直角三角形,且AE=AB=3,AF=AC=2,∴EF==.
17. 【答案】24+16  [解析] 如图,将△BPC绕点B逆时针旋转60°后得到△BP′A,连接PP′.
根据旋转的性质可知,
旋转角∠PBP′=∠CBA=60°,BP=BP′,
∴△BPP′为等边三角形,
∴BP′=BP=8=PP′.
由旋转的性质可知,AP′=PC=10,
在△APP′中,PP′=8,AP=6,AP′=10,
由勾股定理的逆定理,得△APP′是直角三角形,
∴S△ABP+S△BPC=S四边形AP′BP=S△BPP′+S△AP′P=BP2+PP′·AP=24+16 .
故答案为24+16 .
三、解答题(本大题共4道小题)
18. 【答案】
解:(1)在Rt△ABC中,
∵∠B=60°,BC=2 ,
∴AB=4,AC=6.
∵DF垂直平分AB,∴AD=2 .
又∵∠DAG=30°,
∴DG=2,AG=4,
∴GC=AC-AG=6-4=2.
(2)MD=ND.
证明:∵D是AB的中点,∠ACB=90°,
∴CD=DB=AD.
又∵∠B=60°,∴△CDB是等边三角形,
∴∠CDB=60°.
∵CN⊥DB,∴ND=DB.
∵∠EDF=90°,
∴∠EDA=180°-∠EDF-∠CDB=30°.
又∵∠A=30°,
∴∠A=∠EDA,∴HA=HD.
∵HM⊥AD,∴MD=AD.
又∵AD=DB,∴MD=ND.
(3)连接DG,则DG⊥AD′.
由(2)知∠A=∠EDA,
由平移知∠E′D′A=∠EDA,
∴∠A=∠E′D′A.
∵D′E′恰好经过(1)中的点G(此时点D′与点B重合),
∴D′G=AG,
∴DD′=AD=2 .
19. 【答案】
证明:如图,将△ADB绕点D顺时针旋转60°,得到△CDE,连接BE,
则∠ADB=∠CDE,∠A=∠DCE,AB=CE,BD=DE.
又∵∠ADC=60°,∴∠BDE=60°,
∴△DBE是等边三角形,
∴BD=BE.
又∵∠ECB=360°-∠BCD-∠DCE=360°-∠BCD-∠A=360°-(360°-∠ADC-∠ABC)=90°,
∴△ECB是直角三角形,
∴BE2=CE2+BC2,即BD2=AB2+BC2.
20. 【答案】
解:(1)∵△ABC绕点C顺时针旋转角α得到△DEC,点E恰好在AC上,
∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°.
∵CA=CD,
∴∠CAD=∠CDA=(180°-30°)=75°,
∴∠ADE=90°-75°=15°.
(2)证明:连接AD.
∵F是边AC的中点,∠ABC=90°,
∴BF=AC.
∵∠ACB=30°,
∴AB=AC,
∴BF=AB.
∵△ABC绕点C顺时针旋转60°得到△DEC,
∴∠BCE=∠ACD=60°,BC=CE,CD=CA,DE=AB,
∴DE=BF,△ACD和△BCE均为等边三角形,
∴BE=CB.
∵F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△CFD≌△ABC,
∴DF=BC,
∴DF=BE.
又∵BF=DE,
∴四边形BEDF是平行四边形.
21. 【答案】
解:(1)①证明:如图(a),将△DBE绕点D旋转180°得到△DCG,连接FG,则△DCG≌△DBE.
∴DG=DE,CG=BE.
又∵DE⊥DF,
∴DF垂直平分线段EG,∴FG=EF.
∵在△CFG中,CG+CF>FG,
∴BE+CF>EF.
②BE2+CF2=EF2.
证明:∵∠A=90°,∴∠B+∠ACD=90°.
由①得,∠FCG=∠FCD+∠DCG=∠FCD+∠B=90°,
∴在Rt△CFG中,由勾股定理,得CG2+CF2=FG2,∴BE2+CF2=EF2.
(2)EF=BE+CF.
证明:如图(b).∵CD=BD,∠BDC=120°,
∴将△CDF绕点D逆时针旋转120°得到△BDM,
∴△BDM≌△CDF,
∴DM=DF,BM=CF,∠BDM=∠CDF,∠DBM=∠C.
∵∠ABD+∠C=180°,
∴∠ABD+∠DBM=180°,
∴点A,B,M共线,
∴∠EDM=∠EDB+∠BDM=∠EDB+∠CDF=∠BDC-∠EDF=120°-60°=60°=∠EDF.
在△DEM和△DEF中,
∴△DEM≌△DEF,
∴EF=EM=BE+BM=BE+CF.