教案
教
师
学
生
上课时间
年
月
日
学
科
数学
年
级
初一
课时计划
第
次课
阶
段
基础(
)
提高(
)
强化(
)
教学课题
正数和负数
教学目标
掌握正数和负数概念
教学重难点
两种相反意义的量、正确理解有理数的概念及其分类
教学过程
本节知识点
⒈正数和负数的概念
负数:比0小的数
正数:比0大的数
0既不是正数,也不是负数
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:
零上8℃表示为:+8℃;零下8℃表示为:-8℃
3.0表示的意义
⑴0表示“
没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
4、有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数
导学指导
1、小学里学过哪些数请写出来:
、
、
.
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
一、例1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子:
.
例2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
3、正数、负数的概念
1)大于0的数叫做
,小于0的数叫做
。
2)正数是大于0的数,负数是
的数,0既不是正数也不是负数。
练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2,
0.6,
+,
0,
—3.1415,
200,
—754200,
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:,,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么
-50m表示的意义是………………………(
)
A.向东行进50m
C.向北行进50m
B.向南行进50m
D.向西行进50m
5.下列结论中正确的是
…………………………………………(
)
A.0既是正数,又是负数
B.O是最小的正数
C.0是最大的负数
D.0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.
其中是负数的有
……………………………………………………(
)
A.2个
B.3个
C.4个
D.5个
2、例3
(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2009年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,
德国增长1.3%,
法国减少2.4%,
英国减少3.5%,
意大利增长0.2%,
中国增长7.5%.
写出这些国家2009年商品进出口总额的增长率.
练习、1、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
2、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m
,它们之间相差多少米?
?
?
3、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?
?
?
?
4、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。问这10筐橘子各重多少千克?总重多少千克?
三、具有相反意思的量
例4、某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多.
例5.正数和负数
数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).
①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。
②如果80m表示向东走80m,那么-60m表示_________。
③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。
④月球表面的白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。
问题1读下列各数,并指出其中哪些是正数,哪些是负数。
正数:__________________________________________________
负数:__________________________________________________
课后练习
一、选择题
1.若规定收入为“+”,那么支出-50元表示(
)毛
A.收入了50元;
B.支出了50元;
C.没有收入也没有支出;
D.收入了100元
2.下列说法正确的是(
)
A.一个数前面加上“-”号,这个数就是负数;
B.零既不是正数也不是负数
C.零既是正数也是负数;
D.若a是正数,则-a不一定就是负数
3.既是分数,又是正数的是(
)
A.+5
B.-5
C.0
D.8
4.下列说法不正确的是(
)
A.有最小的正整数,没有最小的负整数;
B.一个整数不是奇数,就是偶数
C.如果a是有理数,2a就是偶数;
D.正整数、负整数和零统称整数
5.下列说法正确的是(
)
A.有理数是指整数、分数、正有理数、零、负有理数这五类数
B.有理数不是正数就是负数
C.有理数不是整数就是分数;
D.以上说法都正确
二、填空题
1.向东走10米记作-10米,那么向西走5米,记作____________.
2.某城市白天的最高气温为零上6℃,到了晚上8时,气温下降了8℃,该城市当晚8时的气温为_________.
3.如果某股票第一天跌了3.01%,应表示为________,第二天涨了4.21%,应表示为_____________.
4.一种零件标明的要求是
(单位:mm),表示这种零件的标准尺寸为直径10mm,该零件最大直径不超过____________mm,最小不小于____________mm,为合格产品.
5.若书店在学校的东面500米记作+500米,那么超市的位置记作-600米,则表示____________.
6.在东西走向的公路上,乙在甲的东边3千米处,丙距乙5千米,则丙在甲的__________.
7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是___________,如果在原来的位置上再上升20米,则高度是____________.
8.收入-200元的实际意义是_____________________.
三、解答题
1.把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-,-15%,-1,,26.
正数集合{
…},
负数集合{
…},
整数集合{
…},
分数集合{
…},
非负整数集合{
…}.
2.下图中的两个圆分别表示正数集合和分数集合,请你在每个圆中及它们重叠的部分各填入3个数.
3.课桌的高度比标准高度高2毫米记作+2毫米,那么比标准高度低3毫米记作什么?现有5张课桌,量得它们的尺寸比标准尺寸长1毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若规定课桌的高度最高不能高于标准高度2毫米,最低不能低于标准高度2毫米,才算合格,问上述5张课桌有几张不合格?
4.在一次数学测验中,一年(4)班的平均分为86分,把高于平均分的部分记作正数.
(1)李洋得了90分,应记作多少?
(2)刘红被记作-5分,她实际得分多少?
(3)王明得了86分,应记作多少?
(4)李洋和刘红相差多少分?
四、学科内综合题
1.已知有A,B,C三个数集,每个数集中所含的数都写在各自的大括号内,请把这些数填入图中相应的部分.
A.{-5,2.7,-9,7,2.1}
B.{-8.1,2.1,-5,9.2,-}
C.{2.1,-8.1,10,7}
2.观察下列各组数,请找出它们的排列规律,并写出后面的2个数.
(1)-2,0,2,4,…,;
(2)1,-,
,-,,-,…;
(3)1,0,-1,0,1,0,-1,0,…;
(4),2,4,-6,8,10,-12,14,….
3.我们用字母a表示一个有理数,试判断下列说法是否正确,若不正确,请举出反例.
(1)a一定表示正数,-a一定表示负数;
(2)如果a是零,那么-a就是负数;
(3)若-a是正数,则a一定为非正数.
归纳:
①在同一个问题中,分别用正数和负数表示的量具有________的意义。
②数0既不是_______,也不是________.