(共26张PPT)
25.3 用频率估计概率
问题1:某林业部门要考查某种幼树在一定条件下的移植成活率,应采用什么具体做法
问题2:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘时(已去掉损坏的柑橘),每千克大约定价为多少元比较合适
必然事件
不可能事件
0 (50%) 1(100%)
不可能事件
随机事件
必然事件
随机事件(不确定事件)
回顾
必然事件发生的概率为1,
记作P(必然事件)=1;
不可能事件发生的概率为0,
记作P(不可能事件)=0;
随机事件(不确定事件)发生的概率介于0~1之 间,即0≤P(不确定事件) ≤1.
如果A为随机事件(不确定事件),
那么0≤P(A) ≤1.
用列举法求概率的条件是什么
(1)试验的所有结果是有限个(n)
(2)各种结果的可能性相等.
用频率估计概率
用列举法可以求一些事件的概率,我们还可以利用多次重复试验,通过统计实验结果去估计概率。
材料:
在重复抛掷一枚硬币时,“正面向上”的频率在0.5左右摆动。随着抛掷次数的增加,一般的,频率呈现一定的稳定性:在0.5左右摆动的幅度会越来越小。
这时,我们称“正面向上”的频率稳定于0.5.
思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何变化?
数学史实
事实上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性。
瑞士数学家雅各布·伯努利(1654-1705),被公认为是概率论的先驱之一,他最早阐明了随着试验次数的增加,频率稳定在概率附近。
归纳:
一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么事件A发生的概率P(A)=p。
用频率估计的概率可能小于0吗?可能大于1吗?
某林业部门要考查某种幼树在一定条件下的移植成活率,应
采用什么具体做法
观察在各次试验中得到的幼树成活的频率,谈谈
你的看法.
估计移植成活率
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
是实际问题中的一种概率,可理解为成活的概率.
估计移植成活率
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
由下表可以发现,幼树移植成活的频率在____左右摆动,
并且随着移植棵数越来越大,这种规律愈加明显.
所以估计幼树移植成活的概率为_____.
0.9
0.9
移植总数(n) 成活数(m)
10 8
成活的频率
0.8
( )
50 47
270 235 0.870
400 369
750 662
1500 1335 0.890
3500 3203 0.915
7000 6335
9000 8073
14000 12628 0.902
0.94
0.923
0.883
0.905
0.897
1.林业部门种植了该幼树1000棵,估计能成活_______棵.
2.我们学校需种植这样的树苗500棵来绿化校园,则至少
向林业部门购买约_______棵.
900
556
估计移植成活率
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率( )
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
某水果公司以2元/千克的成本新进了10 000千克柑橘,如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适
为简单起见,我们能否直接把表中的500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的概率?
根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率( )
损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
从表可以看出,柑橘损坏的频率在常数_____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.
思 考
0.1
稳定
0.9
设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000
解得 x≈2.8
因此,出售柑橘时每千克大约定价为2.8元可获利润5 000元.
根据估计的概率可以知道,在10 000千克柑橘中完好柑橘的质量为
10 000×0.9=9 000千克,完好柑橘的实际成本为
为简单起见,我们能否直接把表中500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的频率看作柑橘损坏的概率?
应该可以的
因为500千克柑橘损坏51.54千克,损坏率是0.103,可以近似的估算是柑橘的损坏概率
某农科所在相同条件下做了某作物种子发芽率的实验,结果如下表所示:
种子个数 发芽种子个数 发芽种子频率
100 94
200 187
300 282
400 338
500 435
600 530
700 624
800 718
900 814
1000 981
一般地,1 000千克种子中大约有多少是不能发芽的?
练 习
0.94
0.94
0.94
0.96
0.87
0.89
0.89
0.9
0.9
0.98
种子个数 发芽种子个数 发芽种子频率
100 94
200 187
300 282
400 338
500 435
600 530
700 624
800 718
900 814
1000 981
0.94
0.94
0.94
0.96
0.87
0.89
0.89
0.9
0.9
0.98
一般地,1 000千克种子中大约有多少是不能发芽的?
解答:这批种子的发芽的频率稳定在0.9即种子发芽的概率为90%,不发芽的概率为0.1,机不发芽率为10%
所以: 1000×10%=100千克
1000千克种子大约有100千克是不能发芽的.
上面两个问题,都不属于结果可能性相等的类型.移植中有两种情况活或死.它们的可能性并不相等, 事件发生的概率并不都为50%.柑橘是好的还是坏的两种事件发生的概率也不相等.因此也不能简单的用50%来表示它发生的概率.
概率伴随着我你他
1.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少 该镇看中央电视台早间新闻的大约是多少人
解:
根据概率的意义,可以认为其概率大约等于250/2000=0.125.
该镇约有100000×0.125=12500人看中央电视台的早间新闻.
问题
试一试
2.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾.
310
270
3、小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,掷中里面小圈小明胜,未掷入大圈内不算,你认为游戏公平吗?
为什么?
3m
2m
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下:
试一试
(1)随着调查次数的增加,红色的频率如何变化?
(2)你能估计调查到10 000名同学时,红色的频率是多少吗?
估计调查到10 000名同学时,红色的频率大约仍是40%左右.
随着调查次数的增加,红色的频率基本稳定在40%左右.
(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?
红、黄、蓝、绿及其它颜色的生产比例大约为4:2:1:2:1 .
升华提高
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想:
用样本去估计总体
用频率去估计概率
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
从一定的高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不找地,估计一下哪种事件的概率更大,与同学合作,通过做实验来验证
一下你事先估计是否正确?
你能估计图钉尖朝上的概率吗?
大家都来做一做
小结
1.随机事件的概念
2.随机事件的概率的定义
在一定条件下可能发生也可能不发生的事件,叫做随机事件.
在大量重复进行同一试验时, 事件 发生的频率 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件 的概率.