C.N【解析】选A.因为a>b>0且ab=1,
所以a>1,02,
所以00,M=0,即P2.已知a>b>0,c>d>0,m=-,n=,则m与n的大小关系是
( )
A.mn C.m≥n D.m≤n
【解析】选B.因为a>b>0,c>d>0,
所以ac>bd>0,>,
所以m>0,n>0.又因为m2=ac+bd-2,
n2=ac+bd-(ad+bc),又由ad+bc>2,
所以-2>-ad-bc,所以m2>n2,所以m>n.
二、填空题(每小题5分,共10分)
3.已知0【解析】因为00,b>0,c>0,
又a2-b2=(2)2-(1+x)2=-(1-x)2<0,
所以a2-b2<0,所以a0,所以c>b,所以c>b>a.
答案:c
4.比较大小:log34______log67.
【解题指南】令log34=a,log67=b,利用对数运算性质,比较a-b与0的大小.
【解析】设log34=a,log67=b,则3a=4,6b=7,得7·3a=4·6b=4·2b·3b,即3a-b=,显然b>1,2b>2,则3a-b=>1?a-b>0?a>b.
答案:>
三、解答题(每小题10分,共20分)
5.若实数x,y,m满足|x-m|<|y-m|,则称x比y接近m.对任意两个不相等的正数a,b,证明:a2b+ab2比a3+b3接近2ab.
【证明】因为a>0,b>0,且a≠b,所以a2b+ab2>2ab,
a3+b3>2ab.所以a2b+ab2-2ab>0,
a3+b3-2ab>0.
所以|a2b+ab2-2ab|-|a3+b3-2ab|
=a2b+ab2-2ab-a3-b3+2ab
=a2b+ab2-a3-b3=a2(b-a)+b2(a-b)
=(a-b)(b2-a2)=-(a-b)2(a+b)<0
所以|a2b+ab2-2ab|<|a3+b3-2ab|,
所以a2b+ab2比a3+b3接近2ab.
6.甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m行走,另一半以速度n行走;乙有一半路程以速度m行走,另一半路程以速度n行走.如果m≠n,问甲、乙二人谁先到达指定地点?
【解析】设从出发地点至指定地点的路程为s,甲、乙二人走完这段路程所用的时间分别为t1,t2,依题意有:
m+n=s,+=t2.
所以t1=,t2=,
所以t1-t2=-==
-.其中s,m,n都是正数,且m≠n,所以t1-t2<0,即t1【方法技巧】应用不等式解决实际问题的策略
(1)应用不等式解决实际问题时,关键是如何把等量关系、不等量关系转化为不等式的问题来解决,也即建立数学模型是解应用题的关键.
(2)在实际应用题中解决不等式问题时,常用比较法来判断数的大小关系,若是选择题或填空题,则可用特殊值加以判断.