中小学教育资源及组卷应用平台
2020-2021学年沪科版数学九上期末模拟试题4
姓名:__________班级:__________考号:__________总分_________
、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1
B.
C.1
D.
一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是( )
A.v=320t
B.v=
C.v=20t
D.v=
在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A.
B.
C.
D.
反比例函数y=(x<0)的图象位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )
A.360元
B.720元
C.1080元
D.2160元
用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( )
A.点在圆内
B.点在圆上
C.点在圆心上
D.点在圆上或圆内
如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16
小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:
①这个函数图象的顶点始终在直线y=﹣x+1上,
②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形,
③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2,
④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.
其中错误结论的序号是( )
A.①
B.②
C.③
D.④
如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为( )
A.
B.
C.1
D.
如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④
B.①②⑤
C.②③④
D.③④⑤
如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard
point)是法国数学家和数学教育家克洛尔(A.L.Crelle
1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard
1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=( )
A.5
B.4
C.
D.
如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )
A.19cm2
B.16cm2
C.15cm2
D.12cm2
、填空题(本大题共6小题,每小题4分,共24分)
已知点A(-1,y1),B(1,y2),
C(2,
y3)都在反比例函数y=(k>0)的图象上,则___<____<__
(填y1,y2,
y3).
已知二次函数
,当x>0时,y随x的增大而______(填“增大”或“减小”).
我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是______寸.
小明为测量校园里一颗大树的高度,在树底部B所在的水平面内,将测角仪竖直放在与B相距的位置,在D处测得树顶A的仰角为.若测角仪的高度是,则大树的高度约为_____.(结果精确到.参考数据:)
如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为
.
如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为
.
、解答题(本大题共8小题,共78分)
计算:
+20170×(﹣1)﹣4sin45°.
已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.
如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).
已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).
(1)求证:不论m为何值,该函数的图象与x轴总有公共点;
(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?
如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.
(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).
①四条边成比例的两个凸四边形相似,(
命题)
②三个角分别相等的两个凸四边形相似,(
命题)
③两个大小不同的正方形相似.(
命题)
(2)如图1,在四边形ABCD和四边形A1B1C1D1中,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,==.求证:四边形ABCD与四边形A1B1C1D1相似.
(3)如图2,四边形ABCD中,AB∥CD,AC与BD相交于点O,过点O作EF∥AB分别交AD,BC于点E,F.记四边形ABFE的面积为S1,四边形EFCD的面积为S2,若四边形ABFE与四边形EFCD相似,求的值.
如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式;
(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
答案解析
、选择题
【考点】相似三角形的判定与性质
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.
解:∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴()2=.
∵S△ADE=S四边形BCED,
∴=,
∴===﹣1.
故选:C.
【点评】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
【考点】根据实际问题列反比例函数关系式
【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.
解:由题意vt=80×4,
则v=.
故选B.
【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.
【考点】
锐角三角函数的定义.
【分析】利用锐角三角函数定义求出cosB的值即可.
解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC==,
则cosB==,
故选A
【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.
【考点】反比例函数的图象
【分析】根据题目中的函数解析式和x的取值范围,可以解答本题.
解:∵反比例函数y=(x<0)中,k=1>0,
∴该函数图象在第三象限,
故选:C.
【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质.
【考点】相似多边形的性质
【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.
解:3m×2m=6m2,
∴长方形广告牌的成本是120÷6=20元/m2,
将此广告牌的四边都扩大为原来的3倍,
则面积扩大为原来的9倍,
∴扩大后长方形广告牌的面积=9×6=54m2,
∴扩大后长方形广告牌的成本是54×20=1080m2,
故选:C.
【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.
【考点】点与圆的位置关系;反证法
【分析】由于反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.由此即可解决问题.
解:反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是:点在圆上或圆内.
故选:D.
【点评】本题主要考查了反证法的步骤,其中在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
【考点】反比例函数的性质,反比例函数图象上点的坐标特征
【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,进过点C时k最大,据此可得出结论.
解:∵△ABC是直角三角形,
∴当反比例函数y=经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=16,
∴2≤k≤16.
故选C.
【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.
【考点】一次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点,等腰直角三角形
【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.
解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)
①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1
∴这个函数图象的顶点始终在直线y=﹣x+1上
故结论①正确,
②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形
令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1
解得:x=m﹣,x=m+
∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形
∴|﹣m+1|=|m﹣(m﹣)|
解得:m=0或1
∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确,
③∵x1+x2>2m
∴
∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x2,且﹣1<0
∴y1>y2
故结论③错误,
④当﹣1<x<2时,y随x的增大而增大,且﹣1<0
∴m的取值范围为m≥2.
故结论④正确.
故选:C.
【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.
【考点】圆周角定理;解直角三角形.
【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出DH=4,由勾股定理得出BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.
解:连接OD,如图所示:
∵AB是⊙O的直径,且经过弦CD的中点H,[]
∴AB⊥CD,
∴∠OHD=∠BHD=90°,
∵cos∠CDB==,BD=5,
∴DH=4,
∴BH==3,
设OH=x,则OD=OB=x+3,
在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,
解得:x=,
∴OH=;
故选:D.
【点评】此题考查了垂径定理、勾股定理以及三角函数.此题难度不大,注意数形结合思想的应用.
【考点】二次函数图象与系数的关系
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.
解:①∵对称轴在y轴右侧,
∴a、b异号,
∴ab<0,故正确;
②∵对称轴x=﹣=1,
∴2a+b=0;故正确;
③∵2a+b=0,
∴b=﹣2a,
∵当x=﹣1时,y=a﹣b+c<0,
∴a﹣(﹣2a)+c=3a+c<0,故错误;
④根据图示知,当m=1时,有最大值;
当m≠1时,有am2+bm+c≤a+b+c,
所以a+b≥m(am+b)(m为实数).
故正确.
⑤如图,当﹣1<x<3时,y不只是大于0.
故错误.
故选:A.
【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).
【考点】等腰直角三角形的性质,相似三角形的判定和性质
【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.
解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,
∵∠1+∠QEF=∠3+∠DFQ=45°,
∴∠QEF=∠DFQ,∵∠2=∠3,
∴△DQF∽△FQE,
∴===,
∵DQ=1,
∴FQ=,EQ=2,
∴EQ+FQ=2+,
故选D
【点评】本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
【考点】勾股定理,二次函数的最值.
【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=t2﹣6t+24,利用配方法即可求出四边形PABQ的面积最小值,此题得解.
解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,
∴AC==6cm.
设运动时间为t(0≤t≤4),则PC=(6﹣t)cm,CQ=2tcm,
∴S四边形PABQ=S△ABC﹣S△CPQ=AC?BC﹣PC?CQ=×6×8﹣(6﹣t)×2t=t2﹣6t+24=(t﹣3)2+15,
∴当t=3时,四边形PABQ的面积取最小值,最小值为15.
故选C.
【点评】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法找出S四边形PABQ=t2-6t+24是解题的关键.
、填空题
【考点】反比例函数图象上点的坐标的特征
【分析】分析:可以把三个点的横坐标代入函数解析式求出各纵坐标后再比较大小.
解:由已知可得:y1=,
y2=,
y3=.
∵k>0,
∴-k<<k
即y1<y3<y2.
【点评】本题属于基础应用题,只需学生熟练掌握点的坐标适合函数关系式,即可完成.
【考点】二次函数y=ax2的性质
【分析】根据二次函数性质:当a>0时,在对称轴右边,y随x的增大而增大.由此即可得出答案.
解:∵a=1>0,
∴当x>0时,y随x的增大而增大.
故答案为:增大.
【点评】本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.
【考点】勾股定理,垂径定理的应用
【分析】根据题意可得,由垂径定理可得尺寸,设半径,则,在中,根据勾股定理可得:,解方程可得出木材半径,即可得出木材直径.
解:由题可知,
为半径,
尺寸,
设半径,
,
在中,根据勾股定理可得:
解得:,
木材直径为26寸;
故答案为:26.
【点睛】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.
【考点】解直角三角形的应用-仰角俯角问题
【分析】过D作DE⊥AB,解直角三角形求出AE即可解决问题.
解:如图,过D作DE⊥AB,则四边形BCDE是矩形,
∴BC=DE,BE=CD,
∵
在D处测得旗杆顶端A的仰角为52?,
∴∠ADE=52?,
∵BC=DE=8m,
∴AE=DE?tan52?≈8×1.28≈10.24m,
∴AB=AE+BE=AE+CD=10.24+1=11.24m≈11m.
∴AB约为:11m.
故答案为:11m.
【点评】本题考查了解直角三角形的应用-仰角俯角问题,构造直角三角形是解答的关键.
【考点】反比例函数图象上点的坐标特征;矩形的性质
【分析】根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.
解:∵四边形ABCD是矩形,点A的坐标为(2,1),
∴点D的横坐标为2,点B的纵坐标为1,
当x=2时,y==3,
当y=1时,x=6,
则AD=3﹣1=2,AB=6﹣2=4,
则矩形ABCD的周长=2×(2+4)=12,
故答案为:12.
【点评】本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.
【考点】勾股定理,切线的判定与性质,相似三角形的判定和性质
【分析】根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.
解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,
∴AB==6,
在Rt△ADC中,∠C=90°,AC=12,CD=5,
∴AD==13,
当⊙P于BC相切时,点P到BC的距离=6,
过P作PH⊥BC于H,
则PH=6,
∵∠C=90°,
∴AC⊥BC,
∴PH∥AC,
∴△DPH∽△DAC,
∴,
∴=,
∴PD=6.5,
∴AP=6.5,
当⊙P于AB相切时,点P到AB的距离=6,
过P作PG⊥AB于G,
则PG=6,
∵AD=BD=13,
∴∠PAG=∠B,
∵∠AGP=∠C=90°,
∴△AGP∽△BCA,
∴,
∴=,
∴AP=3,
∵CD=5<6,
∴半径为6的⊙P不与△ABC的AC边相切,
综上所述,AP的长为6.5或3,
故答案为:6.5或3.
【点评】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,熟练正确切线的性质是解题的关键.
、解答题
【考点】实数的运算;零指数幂;特殊角的三角函数值.
【分析】根据立方根的定义、零指数幂及特殊角的三角函数值求得各项的值,再计算即可.
解:+20170×(﹣1)﹣4sin45°
=2+1×(﹣1)﹣4×
=2﹣1﹣2
=﹣1.
【考点】作图﹣轴对称变换;作图﹣位似变换
【分析】(1)利用关于y轴对称点的性质得出对应点得出即可;
(2)利用位似图形的性质得出对应点坐标进而得出答案.
解:(1)如图所示:△A1B1C1即为所求:
(2)如图所示:△A2B2C2即为所求;
B2(10,8)
【点评】此题主要考查了位似变换与轴对称变换,得出对应点位置是解题关键.
【考点】解直角三角形的应用﹣仰角俯角问题
【分析】过C作CD⊥AB于D,交海面于点E,设BD=x,利用锐角三角函数的定义用x表示出BD及CD的长,由CE=CD+DE即可得出结论.
解:过C作CD⊥AB于D,交海面于点E,设BD=x,
∵∠CBD=60°,
∴tan∠CBD==
∴CD=x.
∵AB=2000,
∴AD=x+2000,
∵∠CAD=45°
∴tan∠CAD==1,
∴x=x+2000,
解得x=1000+1000,
∴CD=(1000+1000)=3000+1000,
∴CE=CD+DE=3000+1000+500=3500+1000.
答:黑匣子C点距离海面的深度为3500+1000米.
【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.
【考点】二次函数图象上点的坐标特征;抛物线与x轴的交点
【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;
(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.
(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,
解得:x1=1,x2=m+3.
当m+3=1,即m=﹣2时,方程有两个相等的实数根;
当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.
∴不论m为何值,该函数的图象与x轴总有公共点;
(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,
∴该函数的图象与y轴交点的纵坐标为2m+6,
∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.
【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.
【考点】直线与圆的位置关系;线段垂直平分线的性质.
【分析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;
(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.
解:(1)直线DE与⊙O相切,理由如下:
连接OD,
∵OD=OA,
∴∠A=∠ODA,
∵EF是BD的垂直平分线,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠ODA+∠EDB=90°,
∴∠ODE=180°﹣90°=90°,
∴直线DE与⊙O相切;
(2)连接OE,
设DE=x,则EB=ED=x,CE=8﹣x,
∵∠C=∠ODE=90°,
∴OC2+CE2=OE2=OD2+DE2,
∴42+(8﹣x)2=22+x2,
解得:x=4.75,
则DE=4.75.
【点评】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.
【考点】反比例函数综合题
【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.
解:(1)①如图1,∵m=4,
∴反比例函数为y=,
当x=4时,y=1,
∴B(4,1),
当y=2时,
∴2=,
∴x=2,
∴A(2,2),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴直线AB的解析式为y=﹣x+3;
②四边形ABCD是菱形,
理由如下:如图2,由①知,B(4,1),
∵BD∥y轴,
∴D(4,5),
∵点P是线段BD的中点,
∴P(4,3),
当y=3时,由y=得,x=,
由y=得,x=,
∴PA=4﹣=,PC=﹣4=,
∴PA=PC,
∵PB=PD,
∴四边形ABCD为平行四边形,
∵BD⊥AC,
∴四边形ABCD是菱形;
(2)四边形ABCD能是正方形,
理由:当四边形ABCD是正方形,记AC,BD的交点为P,
∴PA=PB=PC=PD,(设为t,t≠0),
当x=4时,y==,
∴B(4,),
∴A(4﹣t,+t),C(4+t,+t),
∴(4﹣t)(+t)=m,
∴t=4﹣,
∴C(8﹣,4),
∴(8﹣)×4=n,
∴m+n=32,
∵点D的纵坐标为+2t=+2(4﹣)=8﹣,
∴D(4,8﹣),
∴4(8﹣)=n,
∴m+n=32.
【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
【考点】相似形综合题
【分析】(1)根据相似多边形的定义即可判断.
(2)根据相似多边形的定义证明四边成比例,四个角相等即可.
(3)四边形ABFE与四边形EFCD相似,证明相似比是1即可解决问题,即证明DE=AE即可.
(1)解:①四条边成比例的两个凸四边形相似,是假命题,角不一定相等.
②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例.
③两个大小不同的正方形相似.是真命题.
故答案为假,假,真.
(2)证明:如图1中,连接BD,B1D1.
∵∠BCD=∠B1C1D1,且=,
∴△BCD∽△B1C1D1,
∴∠CDB=∠C1D1B1,∠C1B1D1=∠CBD,
∵==,
∴=,
∵∠ABC=∠A1B1C1,
∴∠ABD=∠A1B1D1,
∴△ABD∽△A1B1D1,
∴=,∠A=∠A1,∠ADB=∠A1D1B1,
∴,===,∠ADC=∠A1D1C1,∠A=∠A1,∠ABC=∠A1B1C1,∠BCD=∠B1C1D1,
∴四边形ABCD与四边形A1B1C1D1相似.
(3)如图2中,
∵四边形ABCD与四边形EFCD相似.
∴=,
∵EF=OE+OF,
∴=,
∵EF∥AB∥CD,
∴=,==,
∴+=+,
∴=,
∵AD=DE+AE,
∴=,
∴2AE=DE+AE,
∴AE=DE,
∴=1.
【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,相似多边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.
【考点】二次函数综合题
【分析】(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
(3)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案.
解:(1)把(1,0),(﹣3,0)代入函数解析式,得
,
解得,
抛物线的解析式为y=x2+2x﹣3;
当x=﹣2时,y=(﹣2)2+2×(﹣2)﹣3,解得y=﹣3,
即D(﹣2,﹣3).
设AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入,得
,
解得,
直线AD的解析式为y=x﹣1;
(2)设P点坐标为(m,m﹣1),Q(m,m2+2m﹣3),
l=(m﹣1)﹣(m2+2m﹣3)
化简,得
l=﹣m2﹣m+2
配方,得
l=﹣(m+)2+,
当m=﹣时,l最大=;
(3)由(2)可知,0<PQ≤.当PQ为边时,DR∥PQ且DR=PQ.
∵R是整点,D(﹣2,﹣3),
∴PQ是正整数,
∴PQ=1,或PQ=2.当PQ=1时,DR=1,
此时点R的横坐标为﹣2,纵坐标为﹣3+1=﹣2或﹣3﹣1=﹣4,
∴R(﹣2,﹣2)或R(﹣2,﹣4);
当PQ=2时,DR=2,
此时点R的横坐标为﹣2,纵坐标为﹣3+2=﹣1或﹣3﹣2=﹣5,
即R(﹣2,﹣1)或R(﹣2,﹣5).
设点R的坐标为(n,n+m2+m﹣3),Q(m,m2+2m﹣3),
则QR2=2(m﹣n)2.
又∵P(m,m﹣1)、D(﹣2,﹣3),
∴PD2=2(m+2)2,
∴(m+2)2=(m﹣n)2,
解得n=﹣2(不合题意,舍去)或n=2m+2.
∴点R的坐标为(2m+2,m2+3m﹣1).
∵R是整点,﹣2<m<1,
∴当m=﹣1时,点R的坐标为(0,﹣3);
当m=0时,点R的坐标为(2,﹣1).
综上所述,存在满足R的点,它的坐标为(﹣2,﹣2)或(﹣2,﹣4)或(﹣2,﹣1)或(﹣2,﹣5)或(0,﹣3)或(2,﹣1).
【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用二次函数的性质;解(3)的关键是利用DR=PQ且是正整数得出DR的长.
_21?????????è?????(www.21cnjy.com)_