(共36张PPT)
第十八章
平行四边形
18.2.3
正方形
第2课时
正方形的判定
人教版
八年级数学下册
教学课件
1.
情景导学
1
2.
新课目标
2
3.
新课进行时
4.
知识小结
目录
Contents
5.
随堂演练
6.
课后作业
第一部分
情景导学
情景导学
什么是正方形?正方形有哪些性质?
A
B
C
D
正方形:有一组邻边相等,并且有一个角是直角的平行四边形.
正方形性质:①四个角都是直角;
②四条边都相等;
③对角线相等且互相垂直平分.
O
情景导学
你是如何判断是矩形、菱形?
平行四边形
矩形
菱形
四边形
三个角是直角
四条边相等
定义
四个判定定理
定义
对角线相等
定义
对角线垂直
怎样判定一个四边形是正方形呢?
第二部分
新课目标
新课目标
1.探索并证明正方形的判定,并了解平行四边形、
矩形、菱形之间的联系和区别;(重点、难点)
2.会运用正方形的判定条件进行有关的论证和计算
.
(难点)
第三部分
新课进行时
新课进行时
核心知识点一
准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.
正方形
猜想
满足怎样条件的矩形是正方形?
矩形
正方形
一组邻边相等
对角线互相垂直
正方形的判定
新课进行时
A
B
C
D
O
对角线互相垂直的矩形是正方形.
已知:如图,在矩形ABCD中,AC
,
DB是它的两条对角线,
AC⊥DB.
求证:四边形ABCD是正方形.
证明:∵四边形ABCD是矩形,
∴
AO=CO=BO=DO
,∠ADC=90°.
∵AC⊥DB,
∴
AD=AB=BC=CD,
∴四边形ABCD是正方形.
新课进行时
把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.
正方形
菱形
满足怎样条件的菱形是正方形?
一个角是直角
对角线相等
正方形
新课进行时
已知:如图,在菱形ABCD中,AC
,
DB是它的两条对角线,
AC=DB.
求证:四边形ABCD是正方形.
证明:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥DB.
∵AC=DB,
∴
AO=BO=CO=DO,
∴△AOD,△AOB,△COD,△BOC是等腰直角三角形,
∴∠DAB=∠ABC=∠BCD=∠ADC=90°,
∴四边形ABCD是正方形.
A
B
C
D
O
对角线相等的菱形是正方形.
新课进行时
正方形判定的几条途径:
正方形
正方形
+
+
先判定菱形
先判定矩形
矩形条件(二选一)
菱形条件(二选一)
一个直角,
一组邻边相等,
对角线相等
对角线垂直
平行四边形
正方形
一组邻边相等
一内角是直角
新课进行时
在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是(
)
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC
C
A
B
C
D
O
新课进行时
例1
在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗?为什么?
证明:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.
∵AE=BF=CM=DN,
∴AN=BE=CF=DM.
分析:由已知可证△AEN≌△BFE≌
△CMF≌△DNM,得四边形EFMN是菱形,再证有一个角是直角即可.
新课进行时
在△AEN、△BFE、△CMF、△DNM中,
AE=BF=CM=DN,
∠A=∠B=∠C=∠D,
AN=BE=CF=DM,
∴△AEN≌△BFE≌△CMF≌△DNM,
∴EN=FE=MF=NM,∠ANE=∠BEF,
∴四边形EFMN是菱形,
∠NEF=180°-(∠AEN+∠BEF)
=180°-(∠AEN+∠ANE)
=180°-90°=90°.
∴四边形EFMN是正方形
.
新课进行时
证明:∵
DE⊥AC,DF⊥AB
,
∴∠DEC=
∠DFC=90°.
又∵
∠C=90
°,
∴四边形ADFC是矩形.过点D作DG⊥AB,垂足为G.
∵AD是∠CAB的平分线
DE⊥AC,DG⊥AB,
∴
DE=DG.
同理得DG=DF,
∴ED=DF,
∴四边形ADFC是正方形.
如图,在直角三角形中,∠C=90°,∠A、∠B的平分线交于点D.DE⊥AC,DF⊥AB.求证:四边形CEDF为正方形.
A
B
C
D
E
F
G
新课进行时
如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.
证明:∵四边形ABCD为正方形,
∴OB=OC,∠ABO=∠BCO
=45°,
∠BOC=90°=∠COH+∠BOH.
∵EG⊥FH,
∴∠BOE+∠BOH=90°,
∴∠COH=∠BOE,
∴△CHO
≌△BEO,∴OE=OH.
同理可证:OE=OF=OG,
B
A
C
D
O
E
H
G
F
新课进行时
∴OE=OF=OG=OH.
又∵EG⊥FH,
∴四边形EFGH为菱形.
∵EO+GO=FO+HO
,即EG=HF,
∴四边形EFGH为正方形.
B
A
C
B
O
E
H
G
F
新课进行时
如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.
(1)求证:BF=DE;
(2)当点E运动到AC中点时(其他条件都保持不变),
问四边形AFBE是什么特殊四边形?说明理由.
(1)证明:∵正方形ABCD,
∴AB=AD,∠BAD=90°,
∵AF⊥AC,∴∠EAF=90°,
∴∠BAF=∠EAD,
在△ADE和△ABF中,
AD=AB
,∠DAE=∠BAF
,AE=AF
,
∴△ADE≌△ABF(SAS),∴BF=DE;
新课进行时
(2)解:当点E运动到AC的中点时四边形AFBE是正方形,
理由:∵点E运动到AC的中点,AB=BC,
∴BE⊥AC,BE=AE=
AC,
∵AF=AE,
∴BE=AF=AE.
又∵BE⊥AC,∠FAE=∠BEC=90°,
∴BE∥AF,
∵BE=AF,
∴得平行四边形AFBE,
∵∠FAE=90°,AF=AE,
∴四边形AFBE是正方形.
新课进行时
前面学菱形时我们探究了顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形各边中点能得到菱形,那么顺次连接正方形各边中点能得到怎样的特殊平行四边形?
A
B
C
D
A
B
C
D
A
B
C
D
矩形
正方形
任意四边形
平行四边形
菱形
正方形
E
F
G
H
E
F
G
H
E
F
G
H
第四部分
知识小结
知识小结
5种判定方法
三个角是直角
四条边相等
一个角是直角
或对角线相等
一组邻边相等
或对角线垂直
一组邻边相等
或对角线垂直
一个角是直角
或对角线相等
一个角是直角且一组邻边相等
平行四边形、矩形、菱形、正方形的判定小结
第五部分
随堂演练
随堂演练
1.下列命题正确的是(
)
A.四个角都相等的四边形是正方形
B.四条边都相等的四边形是正方形
C.对角线相等的平行四边形是正方形
D.对角线互相垂直的矩形是正方形
D
随堂演练
2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,四边形ABCD是菱形
B.当AC⊥BD时,四边形ABCD是菱形
C.当∠ABC=90°时,四边形ABCD是矩形
D.当AC=BD时,四边形ABCD是正方形
D
随堂演练
3.如图,四边形ABCD中,∠ABC=∠BCD=∠CDA
=90°,请添加一个条件____________________,可得出该四边形是正方形.
AB=BC(答案不唯一)
A
B
C
D
O
4.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,其中错误的是_________________(只填写序号).
②③或①④
随堂演练
5.如图,在四边形ABCD中,
AB=BC
,对角线BD平分?ABC
,
P是BD上一点,过点P作PM?AD
,
PN?CD
,垂足分别为M、N.
(1)
求证:?ADB=?CDB;
(2)
若?ADC=90?,求证:四边形MPND是正方形.
C
A
B
D
P
M
N
证明:(1)∵AB
=
BC,BD平分∠ABC.
∴∠1=∠2.
∴△ABD≌△CBD
(SAS).
∴∠ADB=∠CDB.
1
2
随堂演练
C
A
B
D
P
M
N
(2)∵∠ADC=90°;
又∵PM⊥AD,PN⊥CD;
∴∠PMD=∠PND=90°.
∴四边形NPMD是矩形.
∵∠ADB=∠CDB;
∴∠ADB=∠CDB=45°.
∴∠MPD=∠NPD=45°.
∴DM=PM,DN=PN.
∴四边形NPMD是正方形.
随堂演练
6.如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.
(1)试说明四边形AEDF的形状,并说明理由.
(2)连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?
解:(1)∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形.
(2)∵四边形AEDF为菱形,
∴AD平分∠BAC,
则AD平分∠BAC时,四边形AEDF为菱形.
随堂演练
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.
解:由四边形AEDF为正方形
∴∠BAC=90°,
∴△ABC是以BC为斜边的直角三角形即可.
第六部分
课后作业
课后作业
1、完成教材本课时对应习题;
2、完成同步练习册本课时的习题。
谢谢欣赏
THANK
YOU
FOR
LISTENING
谢谢大家!
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?欢迎加入21世纪教育网教师合作团队!!!月薪过万不是梦!!!