苏科版数学七年级上册 第四章《一元一次方程》实际应用题强化限时练二(4份 Word版 含解析)

文档属性

名称 苏科版数学七年级上册 第四章《一元一次方程》实际应用题强化限时练二(4份 Word版 含解析)
格式 zip
文件大小 199.0KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-12-08 10:21:56

文档简介

七年级上册
第四章《一元一次方程》
实际应用题强化提优五
1.自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包.
2.一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为多少元?(注:)
3.列方程解应用题:
今年“六?一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?
4.某足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分.一个队踢14场球负5场共得19分,问这个队胜了几场?
5.某校组织师生去参观三峡工程建设,如果单独租用30座客车若干辆,则好坐满;如果单独租用40坐客车,可少租一辆,且余20个坐位,求该校参观三峡建设的人数.
6.2020年5月份,省城太原开展了“活力太原?乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.
7.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;
(2)求明年改装的无人驾驶出租车是多少辆.
8.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?
9.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价﹣进货价).问该文具每件的进货价是多少元?
10.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
参考答案
1.解:设这天早上该班分到x件牛奶,则分到(7﹣x)件面包,根据题意得
24x+16(7﹣x)=144,
解得x=4.
答:这天早上该班分到4件牛奶,3件面包.
2.解:设这件外衣的标价为x元,依题意得
0.8x﹣200=200×10%.
0.8x=20+200.
0.8x=220.
x=275.
答:这件外衣的标价为275元.
3.解:设张红购买甲种礼物x件,则购买乙礼物(x+1)件,
根据题意得:1.2x+0.8(x+1)=8.8,
解得:x=4.
则x+1=5,
答:甲种礼物4件,乙种礼物5件.
4.解:设这个队胜了x场,
依题意得:3x+(14﹣5﹣x)=19,
解得:x=5.
答:这个队胜了5场.
5.解:设需要30座的车是x辆,
根据题意得:30x=40(x﹣1)﹣20,
解得:x=6.
参观人数=30×6=180(人)
故该校参观三峡建设的人数为180.
6.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x元,
根据题意,得80%×(1+50%)x﹣128=568,
解得x=580.
答:该电饭煲的进价为580元.
7.解:(1)50×(1﹣50%)=25(万元).
故明年每辆无人驾驶出租车的预计改装费用是25万元;
(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有
50(260﹣x)+25x=9000,
解得x=160.
故明年改装的无人驾驶出租车是160辆.
8.解:设这些学生共有x人,
根据题意得,
解得x=48.
答:这些学生共有48人.
9.解:设该文具每件的进货价是x元,
依题意得:70%?(x+2)﹣x=0.2
解得:x=4
答:该文具每件的进货价为4元.
10.解:设该市规定的每户每月标准用水量为x吨,
∵12×1.5=18<20,
∴x<12
则1.5x+2.5(12﹣x)=20,
解得:x=10.
答:该市规定的每户每月标准用水量为10吨.七年级上册
第四章《一元一次方程》
实际应用题强化提优二
1.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?
2.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.
3.小陈妈妈做儿童服装生意,在“六一”这一天上午的销售中,某规格童装每件以60元的价格卖出,盈利20%,求这种规格童装每件的进价.
4.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.
5.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?
6.小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?
7.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.
8.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?
9.为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?
10.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1个小时;
根据上面信息,他作出如下计划:
(1)在山顶游览1个小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
参考答案
1.解:设七年级收到的征文有x篇,则八年级收到的征文有(118﹣x)篇,
依题意得:(x+2)×2=118﹣x,
解得:x=38.
答:七年级收到的征文有38篇.
2.解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).
(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),
设每相邻两节套管间重叠的长度为xcm,
根据题意得:(50+46+42+…+14)﹣(10﹣1)x=311,
即:320﹣9x=311,
解得:x=1.
答:每相邻两节套管间重叠的长度为1cm.
3.解:设这种规格童装每件的进价为x元,
根据题意得,(1+20%)x=60,
解方程得,x=50,
答:这种规格童装每件的进价为50元.
4.解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,
依题意得:50%x+60%(150﹣x)=80,
解得:x=100,
150﹣100=50(元).
答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.
5.解:设每件衬衫降价x元,依题意有
120×400+(120﹣x)×100=80×500×(1+45%),
解得x=20.
答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.
6.解:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,
依题意得:5x=7(x﹣10),
解得x=35.
所以35﹣10=25(元).
答:A号计算器的单价为35元,则B型号计算器的单价是25元.
7.解:设小明1月份的跳远成绩为xm,则
4.7﹣4.1=3(4.1﹣x),
解得x=3.9.
则每个月的增加距离是4.1﹣3.9=0.2(m).
答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.
8.解:设胜了x场,那么负了(8﹣x)场,根据题意得:
2x+1?(8﹣x)=13,
x=5,
8﹣5=3.
答:九年级一班胜、负场数分别是5和3.
9.解:设欧洲的意向创始成员国有x个,亚洲的意向创始成员国有2x﹣2个,
根据题意得:2x﹣2+x+5=57,
解得:x=18,
∴2x﹣2=34,
答:亚洲和欧洲的意向创始成员国各有34个和18个.
10.解:设上山的速度为v,下山的速度为(v+1),则
2v+1=v+1+2,
解得
v=2.
即上山速度是2千米/小时.
则下山的速度是3千米/小时,山高为5千米.
则计划上山的时间为:5÷2=2.5(小时),
计划下山的时间为:1小时,
则共用时间为:2.5+1+1=4.5(小时),
所以出发时间为:12:00﹣4小时30分钟=7:30.
答:孔明同学应该在7点30分从家出发.七年级上册
第四章《一元一次方程》
实际应用题强化提优三
1.下表为深圳市居民每月用水收费标准,(单位:元/m3).
用水量
单价
x≤22
a
剩余部分
a+1.1
(1)某用户用水10立方米,共交水费23元,求a的值;
(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?
2.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?
3.为促进教育均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.
4.家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:
(1)他下山时的速度比上山时的速度每小时快1千米;
(2)他上山2小时到达的位置,离山顶还有1千米;
(3)抄近路下山,下山路程比上山路程近2千米;
(4)下山用1个小时;
根据上面信息,他作出如下计划:
(1)在山顶游览1个小时;
(2)中午12:00回到家吃中餐.
若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?
5.我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过11.9万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:
(1)从今年年初起每年新增电动车数量最多是多少万辆?
(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)
6.某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
7.甲乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.
(1)求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)
(2)若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?
8.为鼓励居民节约用电,某省试行分档收费,具体执行方案如表:
档次
每户每月用电数(度)
执行电价(元/度)
第一档
小于等于200
0.55
第二档
大于200小于400
0.6
第三档
大于等于400
0.85
例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).
某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?
9.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.
10.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?
参考答案
1.解:(1)由题意可得:10a=23,
解得:a=2.3,
答:a的值为2.3;
(2)设用户用水量为x立方米,
∵用水22立方米时,水费为:22×2.3=50.6<71,
∴x>22,
∴22×2.3+(x﹣22)×(2.3+1.1)=71,
解得:x=28,
答:该用户用水28立方米.
2.解:设蜗牛还需要x分钟到达B点.
由图象可知,AC=3,CB=2,
∴=,
解得x=4,
经检验,x=4的分式方程的解,符合题意,
答:蜗牛还需要4分钟到达B点.
3.解:设女生x人,则男生为(x+3)人.
依题意得
x+x+3=45,
解得,x=21,
男生为:x+3=24.
答:该班男生、女生分别是24人、21人.
4.解:设上山的速度为v,下山的速度为(v+1),则
2v+1=v+1+2,
解得
v=2.
即上山速度是2千米/小时.
则下山的速度是3千米/小时,山高为5千米.
则计划上山的时间为:5÷2=2.5(小时),
计划下山的时间为:1小时,
则共用时间为:2.5+1+1=4.5(小时),
所以出发时间为:12:00﹣4小时30分钟=7:30.
答:孔明同学应该在7点30分从家出发.
5.解:(1)设从今年年初起每年新增电动车数量是x万辆,
由题意可得出:今年将报废电动车:10×10%=1(万辆),
∴(10﹣1)+x﹣10%[(10﹣1)+x]+x≤11.9
即9+x﹣0.9﹣0.1x+x≤11.9,
解得:x≤2.
答:从今年年初起每年新增电动车数量最多是2万辆;
(2)∵今年年底电动车拥有量为:(10﹣1)+x=11(万辆),
明年年底电动车拥有量为:11.9万辆,
∴设今年年底到明年年底电动车拥有量的年增长率是y,则11(1+y)=11.9,
解得:y≈0.082=8.2%.
答:今年年底到明年年底电动车拥有量的年增长率是8.2%.
6.解:(1)设该运动员共出手x个3分球,根据题意,得
=12,
解得x=640,
0.25x=0.25×640=160(个),
答:运动员去年的比赛中共投中160个3分球;
(2)小亮的说法不正确;
3分球的命中率为0.25,是40场比赛来说的平均水平,而在其中的一场比赛中,命中率并不一定是0.25,所以该运动员这场比赛中不一定投中了5个3分球.
7.解:(1)设乙的速度是每分钟x米,则甲的速度是每分钟(x+200)米,依题意有
3x+150=200×3,
解得x=150,
x+200=150+200=350.
答:甲的速度是每分钟350米,乙的速度是每分钟150米.
(2)(200×3﹣300×1.2)÷1.2
=(600﹣360)÷1.2
=240÷1.2
=200(米),
200﹣150=50(米).
答:乙的速度至少要提高每分钟50米.
8.解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得
0.55x+0.6(500﹣x)=290.5,
解得:x=190,
∴6月份用电500﹣x=310度.
当5月份用电量为x度>200度,六月份用电量为(500﹣x)度>200度,由题意,得
0.6x+0.6(500﹣x)=290.5
方程无解,
∴该情况不符合题意.
答:该户居民五、六月份分别用电190度、310度.
9.解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得
24x+16(20﹣x)=360,
解得:x=5,
∴乙队整治了20﹣5=15天,
∴甲队整治的河道长为:24×5=120m;
乙队整治的河道长为:16×15=240m.
答:甲、乙两个工程队分别整治了120m,240m.
10.解:设七(2)班有x人参加“光盘行动”,则七(1)班有(x+10)人参加“光盘行动”,依题意有
(x+10)+x+48=128,
解得x=35,
则x+10=45.
答:七(1)班有45人参加“光盘行动”,七(2)班有35人参加“光盘行动”.七年级上册
第四章《一元一次方程》
实际应用题强化提优四
练习一:限时30分钟
1.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:
品名
批发价
零售价
黄瓜
2.4
4
土豆
3
5
(1)他当天购进黄瓜和土豆各多少千克?
(2)如果黄瓜和土豆全部卖完,他能赚多少钱?
2.顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,到两地旅游的人数各是多少人?
3.今年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队占胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?
4.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.
(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?
(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?
5.某开发商进行商铺促销,广告上写着如下条款:
投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:
方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.
方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.
(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)
(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?
练习二:限时30分钟
6.目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.
(1)求舟山与嘉兴两地间的高速公路路程;
(2)两座跨海大桥的长度及过桥费见下表:
大桥名称
舟山跨海大桥
杭州湾跨海大桥
大桥长度
48千米
36千米
过桥费
100元
80元
我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.
7.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.
8.我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2020年此项资金比2019年增加1.69亿元.
(1)2019年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?
(2)2020年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元?
(3)如果按2019﹣2020年筹措此项资金的年平均增长率计算,预计2021年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?
9.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)
10.情景:试根据图中信息,解答下列问题:
(1)购买6根跳绳需 
 元,购买12根跳绳需 
 元.
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.
参考答案
1.解:(1)设他当天购进黄瓜x千克,则土豆(40﹣x)千克,根据题意得:
2.4x+3(40﹣x)=114,
解得:x=10
则土豆为40﹣10=30(千克);
答:他当天购进黄瓜10千克,土豆30千克;
(2)根据题意得:
(4﹣2.4)×10+(5﹣3)×30
=16+60
=76(元).
答:黄瓜和土豆全部卖完,他能赚76元.
2.解:假设到怀集的旅游人数为x人,则到德庆旅游的人数为(2x﹣1)人,根据题意得出:
x+(2x﹣1)=200,
解得:x=67,
则到德庆旅游的人数为:2x﹣1=133(人),
答:到怀集和德庆旅游的人数各是67人,133人.
3.解:设每张300元的门票买了x张,则每张400元的门票买了(8﹣x)张,由题意,得
300x+400(8﹣x)=2700,
解得:x=5,
∴买400元每张的门票张数为:8﹣5=3张.
答:每张300元的门票买了5张,每张400元的门票买了3张.
4.解:(1)设境外投资合作项目个数为x个,
根据题意得出:2x﹣(348﹣x)=51,
解得:x=133,
故省外境内投资合作项目为:348﹣133=215个.
答:境外投资合作项目为133个,省外境内投资合作项目为215个.
(2)∵境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,
∴湖南省共引进资金:133×6+215×7.5=2410.5亿元.
答:东道主湖南省共引进资金2410.5亿元.
5.解:(1)设商铺标价为x万元,则
按方案一购买,则可获投资收益(120%﹣1)?x+x?10%×5=0.7x,
投资收益率为×100%=70%,
按方案二购买,则可获投资收益(120%﹣0.85)?x+x?10%×(1﹣10%)×3=0.62x,
投资收益率为×100%≈72.9%,
∴投资者选择方案二所获得的投资收益率更高;
(2)设商铺标价为y万元,则甲投资了y万元,则乙投资了0.85y万元.
由题意得0.7y﹣0.62y=5,
解得y=62.5,
乙的投资是62.5×0.85=53.125万元
∴甲投资了62.5万元,乙投资了53.125万元.
6.解:(1)设舟山与嘉兴两地间的高速公路路程为s千米,由题意得,
﹣=10.
4.5s﹣4s=180,
0.5s=180,
解得s=360,
所以舟山与嘉兴两地间的高速公路路程为:360千米;
(2)轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,
根据表格和林老师的通行费可知,
y=295.4,x=360﹣48﹣36=276,b=100+80=180,将它们代入y=ax+b+5中得,
295.4=276a+180+5,
解得a=0.4,
所以轿车的高速公路里程费为:0.4元/千米.
7.解:设粗加工的该种山货质量为x千克,
根据题意,得x+(3x+2000)=10000.
解得x=2000.
答:粗加工的该种山货质量为2000千克.
8.解:(1)3.6﹣1.69=1.91(亿元).
2019年投入的资金为1.91亿元.
(2)设市级投入x亿元,则县级投入x亿元,省级投入x亿元,
2.98+x+x+x=3.6
解得,x=0.36.
∴x=×0.36=0.24.
x=×0.36=0.02.
省、市、县分别投入
0.02亿元、0.36亿元、0.24亿元.
(3)3.6×(1+)≈6.8(亿元).
预计2021年我市约筹措6.8亿元.
9.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:
﹣=260,
1.7x=358.8,
解得x=,
≈352km/h.
答:提速后的火车速度约是352km/h.
10.解:(1)25×6=150(元),
25×12×0.8
=300×0.8
=240(元).
答:购买6根跳绳需150元,购买12根跳绳需240元.
(2)有这种可能.
设小红购买跳绳x根,则
25×0.8x=25(x﹣2)﹣5,
解得x=11.
故小红购买跳绳11根.