八年级数学下册课件-18.2.2 菱形-人教版(34张)

文档属性

名称 八年级数学下册课件-18.2.2 菱形-人教版(34张)
格式 ppt
文件大小 1.5MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-08 19:29:26

图片预览

文档简介

19.2特殊的平行四边形
19.2.2菱形
教学重难点:
重点:理解菱形的定义以及基本性质

难点:能正确运用菱形的性质解决实
际问题

平行四边形的对边平行;
平行四边形的对边相等;

平行四边形的对角相等;
平行四边形的邻角互补;
对角线
平行四边形的对角线互相平分;
活动一:
矩形的性质
矩形的四个角都是直角
矩形的对角线相等
在平行四边形中,如果内角大小保持不变仅改变边的长度,能否得到一个特殊的平行四边形?
平行四边形
有一组邻边相等的平行四边形
菱形
邻边相等
活动二:
有一组 的 叫做
邻边相等
平行四边形
A
D
C
B
∵四边形ABCD是平行四边形
AB=BC
∴四边形ABCD是菱形
菱形
有一组 的 叫做
邻边相等
平行四边形
A
D
C
B
∵四边形ABCD是平行四边形
AB=BC
∴四边形ABCD是菱形
菱形
有一组 的 叫做
邻边相等
平行四边形
A
D
C
B
∵四边形ABCD是平行四边形
AB=BC
∴四边形ABCD是菱形
菱形
感受生活
你能举出生活中你看到的菱形吗?
菱形就在我们身边
三菱汽车标志欣赏
感受生活
他是这样做的:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
活动三:折一折 剪一剪
画出菱形的两条折痕,并通过折叠手中的图形回答以下问题:
1、菱形是轴对称图形吗?
2、菱形有几条对称轴?
3、对称轴之间有什么关系?
4、你能看出图中哪些线段和角相等?
相等的线段:
相等的角:
等腰三角形有:
直角三角形有:
全等三角形有:
菱形ABCD中
AB=CD=AD=BC
OA=OC OB=OD
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
△ABC △ DBC △ACD △ABD
Rt△AOB Rt△BOC Rt△COD Rt△DOA
Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD △ABC≌△ACD
A
B
C
D
O
1
2
3
4
5
6
7
8
相等的线段:
相等的角:
等腰三角形有:
直角三角形有:
全等三角形有:
菱形ABCD中
AB=CD=AD=BC
OA=OC OB=OD
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
△ABC △ DBC △ACD △ABD
Rt△AOB Rt△BOC Rt△COD Rt△DOA
Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD △ABC≌△ACD
A
B
C
D
O
1
2
3
4
5
6
7
8
相等的线段:
相等的角:
等腰三角形有:
直角三角形有:
全等三角形有:
菱形ABCD中
AB=CD=AD=BC
OA=OC OB=OD
∠DAB=∠BCD ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
△ABC △ DBC △ACD △ABD
Rt△AOB Rt△BOC Rt△COD Rt△DOA
Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD △ABC≌△ACD
A
B
C
D
O
1
2
3
4
5
6
7
8
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的四条边相等
菱形是轴对称图形,也是中心对称图形
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的四条边相等
菱形是轴对称图形,也是中心对称图形
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的四条边相等
菱形是轴对称图形,也是中心对称图形
已知:如图四边形ABCD是菱形
求证:菱形的四条边相等
菱形的两条对角线互相垂直,
并且每一条对角线平分一组对角。
A
B
C
D
O
证明(1)∵四边形ABCD是菱形
∴DA=DC(菱形的定义)
∵DA=BC,AB=DC
∴AB=BC=DC=DA
(2)在△DAC中,又∵AO=CO
∴DB⊥AC,
DB平分∠ADC(三线合一)
同理: DB平分∠ABC;
AC平分∠DAB和∠DCB
(1)AB=BC=CD=DA
(2)AC⊥BD
AC平分∠DAB和∠DCB
BD平分∠ADC和∠ABC
求证:
已知:如图四边形ABCD是菱形
求证:菱形的四条边相等
菱形的两条对角线互相垂直,
并且每一条对角线平分一组对角。
A
B
C
D
O
证明(1)∵四边形ABCD是菱形
∴DA=DC(菱形的定义)
∵DA=BC,AB=DC
∴AB=BC=DC=DA
(2)在△DAC中,又∵AO=CO
∴DB⊥AC,
DB平分∠ADC(三线合一)
同理: DB平分∠ABC;
AC平分∠DAB和∠DCB
(1)AB=BC=CD=DA
(2)AC⊥BD
AC平分∠DAB和∠DCB
BD平分∠ADC和∠ABC
求证:
已知:如图四边形ABCD是菱形
求证:菱形的四条边相等
菱形的两条对角线互相垂直,
并且每一条对角线平分一组对角。
A
B
C
D
O
证明(1)∵四边形ABCD是菱形
∴DA=DC(菱形的定义)
∵DA=BC,AB=DC
∴AB=BC=DC=DA
(2)在△DAC中,又∵AO=CO
∴DB⊥AC,
DB平分∠ADC(三线合一)
同理: DB平分∠ABC;
AC平分∠DAB和∠DCB
(1)AB=BC=CD=DA
(2)AC⊥BD
AC平分∠DAB和∠DCB
BD平分∠ADC和∠ABC
求证:
A
B
C
D
O
(1)菱形具有平行四边形的一切性质;
(2)菱形的四条边都相等;
(3)菱形的两条对角线互相垂直,
并且每一条对角线平分一组对角;
1、菱形ABCD两条对角线BD、AC长分别是6cm和8cm,求菱形的周长和面积。
C
B
D
A


O
分析:
你有什么发现?
活动四:做一做
C
B
D
A


O
E
2、如图,菱形花坛ABCD的周长为80m, ∠ABC=60度,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(分别精确到0.01m和0.01m2 )
B
A
O
C
1.菱形的定义: 是菱形
2.菱形的性质:①菱形的四条边 ,
②菱形的对角线 ,并且每一条对角线一组 对角.
3.下列说法不正确的有 (填番号)
①菱形的对边平行且相等.②菱形的对角线互相平分
③菱形的对角线相等.④菱形的对角线互相垂直.
⑤菱形的一条对角线平分一组对角.⑥菱形的对角相等.
4.菱形的面积公式:① ② .
5.菱形既是 图形,又是 图形.
活动五:
3cm
600
C
C
B
D
A


O
6.已知菱形的周长是12cm,那么它的边长是______.
7.如下图:菱形ABCD中∠BAD=60度,则∠ABD=_______.
8、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是( )
A.10cm B.7cm C. 5cm D.4cm
9.菱形ABCD中,O是两条对角线的交点,已知AB=5cm,AO=4cm,求两对角线AC、BD的长。
C
B
D
A


O
解:∵四边形ABCD是菱形
∴OA=OC,OB=OD
AC⊥BD
∵Rt△AOB中OB2+OA2=AB2
AB=5cm,AO=4cm
∴OB=3cm
∴BD=2OB=6cm
AC=2OA=8cm
对自己说我有哪些收获?
对老师说你还有哪些困惑?
对同学有哪些温馨提示?
畅所欲言
活动六:
1个定义
2个公式
3个特性
:有一组邻边相等的平行四边形叫菱形
:S菱形=底×高
S菱形= 对角线乘积的一半
:特在“边、对角线、对称性”
教材:P102页第5题
P103页第11,12题