八年级数学下册课件-18.2.3 正方形8-人教版(共23张ppt)

文档属性

名称 八年级数学下册课件-18.2.3 正方形8-人教版(共23张ppt)
格式 ppt
文件大小 1.3MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-12-09 10:18:36

图片预览

文档简介

18.2.3 正方形
第十八章 平行四边形
第1课时 正方形的性质和判定
学习目标
1.理解正方形的概念.
2.探索并证明正方形的性质,并了解平行四边形、
矩形、菱形之间的联系和区别.(重点、难点)
3.会应用正方形的性质解决相关证明及计算问题.
(难点)
平行四边形再认识
讲授新课
矩 形


问题1:矩形怎样变化后就成了正方形呢? 你有什么
发现?
问题引入
正方形的性质
正方形
问题2 菱形怎样变化后就成了正方形呢?你有什么
发现?
正方形
邻边相等
矩形


正方形


菱 形
一个角是直角
正方形

正方形定义:
有一组邻边相等并且有一个角是直角的平行四边形叫正方形.
归纳总结
已知:如图,四边形ABCD是正方形.
求证:正方形ABCD四边相等,四个角都是直角.
A
B
C
D
证明:∵四边形ABCD是正方形.
∴∠A=90°, AB=AC (正方形的定义).
又∵正方形是平行四边形.
∴正方形是矩形(矩形的定义),
正方形是菱形(菱形的定义).
∴∠A=∠B =∠C =∠D = 90°,
AB= BC=CD=AD.
证一证
已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.
A
B
C
D
O
证明:∵正方形ABCD是矩形,
∴AO=BO=CO=DO.
∵正方形ABCD是菱形.
∴AC⊥BD.
思考 请同学们观察并思考.??正方形是不是轴对称图形?如果是,那么对称轴有几条?
对称性: .
对称轴: .
轴对称图形
4条
A
B
C
D
矩形
菱形



平行四边形
正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.
平行四边形、矩形、菱形、正方形之间关系:
性质:1.正方形的四个角都是直角,四条边相等.
2.正方形的对角线相等且互相垂直平分.
归纳总结
性 质


对角线
对称性
图形语言

文字语言

符号语言
A
C
D
\
B
A
C
D
B
A
C
D
B
\
\
\




O
\
\
\
\

对边平行, 四条边都相等
四 个 角
都是直角
对角线互相垂直平分且相等,每条对角线平分一组对角
∵四边形ABCD是正方形
∴AB∥CD AD∥BC, AB=BC=CD=AD
∵四边形ABCD是正方形
∴∠A=∠B=∠C=∠D=90°
∵四边形ABCD是正方形
∴AC⊥BD,AC=BD,OA=OB=OC=OD
轴对称图形 中心对称图形
例1、如图,正方形ABCD中,
(1)一条对角线把它分成 个全等的三角形。
问:这些三角形是什么三角形?
(2)两条对角线把它分成 个全等的
三角形。
2
4
等腰直角
A
B
D
C
O
(3)对角线AC与正方形的一边所成的角为 度。
45
例2 如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E, PF⊥DC于F.试说明:AP=EF.
A
B
C
D
P
E
F
解:
连接PC,AC.
又∵PE⊥BC , PF⊥DC,
∵四边形ABCD是正方形,
∴∠FCE=90°, AC垂直平分BD,
∴四边形PECF是矩形,
∴PC=EF.
∴AP=PC.
∴AP=EF.
在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.
归纳
【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.
解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°.
∴∠AEB=15°.
同理可得∠DEC=15°.
∴∠BEC=60°-15°-15°=30°;
当等边△ADE在正方形ABCD内部时,如图②,
AB=AE,∠BAE=90°-60°=30°,
∴∠AEB=75°.
同理可得∠DEC=75°.
∴∠BEC=360°-75°-75°-60°=150°.
综上所述,∠BEC的大小为30°或150°.
易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.
【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.
问题3 你是如何判断一个四边形是矩形、菱形?
平行四边形
矩形
菱形
四边形
三个角是直角
四条边相等
定义
四个判定定理
定义
对角线相等
定义
对角线垂直
思考 怎样判定一个四边形是正方形呢?
讲授新课
正方形的判定
活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.
正方形
猜想 满足怎样条件的矩形是正方形?
矩形
正方形
一组邻边相等
对角线互相垂直
已知:如图,在矩形ABCD中,AC , DB是它的两条对角线,
AC⊥DB.
求证:四边形ABCD是正方形.
证明:∵四边形ABCD是矩形,
∴ AO=CO=BO=DO ,∠ADC=90°.
∵AC⊥DB,
∴ AD=AB=BC=CD,
∴四边形ABCD是正方形.
证一证
A
B
C
D
O
对角线互相垂直的矩形是正方形.
活动2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.
正方形
菱形
猜想 满足怎样条件的菱形是正方形?
正方形
一个角是直角
对角线相等
已知:如图,在菱形ABCD中,AC , DB是它的两条对角线,
AC=DB.
求证:四边形ABCD是正方形.
证明:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥DB.
∵AC=DB,
∴ AO=BO=CO=DO,
∴△AOD,△AOB,△COD,△BOC是等腰直角三角形,
∴∠DAB=∠ABC=∠BCD=∠ADC=90°,
∴四边形ABCD是正方形.
证一证
A
B
C
D
O
对角线相等的菱形是正方形.
正方形判定的几条途径:
正方形
正方形
+
+
先判定菱形
先判定矩形
矩形条件(二选一)
菱形条件(二选一)
一个直角,
一组邻边相等,
总结归纳
对角线相等
对角线垂直
平行四边形
正方形
一组邻边相等
一内角是直角
例3 在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗?为什么?
证明:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.
∵AE=BF=CM=DN,
∴AN=BE=CF=DM.
典例精析
在△AEN、△BFE、△CMF、△DNM中,
AE=BF=CM=DN,
∠A=∠B=∠C=∠D,
AN=BE=CF=DM,
∴△AEN≌△BFE≌△CMF≌△DNM,
∴EN=FE=MF=NM,∠ANE=∠BEF,
∴四边形EFMN是菱形,
∠NEF=180°-(∠AEN+∠BEF)
=180°-(∠AEN+∠ANE)
=180°-90°=90°.
∴四边形EFMN是正方形 .
课堂小结
1.四个角都是直角
2.四条边都相等
3.对角线相等且互相垂直平分
正方形的性质
性质
定义
有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.