(共22张PPT)
第3课时 分数与除法(2)
第4单元 分数的意义和性质
数学人教版五年级下册
创设自主探索的学习情境,使学生在合作交流等过程中,透彻理解分数与除法之间的联系。
学习目标
复习导入
分数与除法的关系
分数可以看成分子除以分母,除法中被除数可以看成是分子,除数可以看成是分母。
a ÷ b = (b ≠ 0)
a
b
探究新知
小新家养鹅7只,养鸭10只,养鸡20只。鹅的只数是鸭的几分之几?鸡的只数是鸭的多少倍?
“鹅的只数是鸭的几分之几”是什么意思?
就是求7只是10只的几分之几。
一、在解决简单的实际问题中,
沟通整数除法与分数的联系
1. 回顾整数除法的含义。
(2)提问:你是怎么得到的?
(1)幼儿园的马老师把6块小点心,平均分给3个小
朋友,每个小朋友得到多少块?
预设:6÷3=2(块)
6块小点心,平均分给3个小朋友,每个小朋友得到多少块?
孩子们!来吃点心了!
(1)把1个蛋糕平均分给2个人,每人多少个?
2. 回顾分数的意义
预设: 1÷2=0.5(个)
(3)把1个蛋糕平均分给3个人,每人多少个?
预设:1÷3=0.333……(个)
(4)当商不能用整数表示时,怎么办呢?
1÷2= (个)
2
1
(2)你是怎么想到 个的?
2
1
1÷3= (个)
3
1
一、在解决简单的实际问题中,
沟通整数除法与分数的联系
3. 汇报:一边摆一边说自己是怎么得到每人分的块数的。
二、在解决稍复杂的实际问题中,
深化对分数意义的理解
1. 把3块月饼,平均分给4个人,每人分得多少块?
(一)借助问题解决完成分数意义的深化
2. 要求:
请你用手中的学具剪一剪、摆一摆,也可以在本上写
一写、画一画。表示出平均每人分得多少块?
二、在解决稍复杂的实际问题中,
深化对分数意义的理解
预设:①一块一块的分,先把每个圆形纸片平均分成4份,每人每
次分得 块,结果每人分得3个 块,也就是 块。
4
1
4
1
4
3
②把每个圆形纸片平均分成4份,再把12小块平均分成4份,
每份是3个 块,再把3个 块拼在一起,每人分得 块。
4
1
4
1
4
3
③把3个圆形纸片叠在一起,平均分成4份,每份是3块的 ,
也就是3个 块,再把3个 块拼在一起,每人分得 块。
4
1
4
1
4
1
4
1
4. 你们认为他们的推理过程合理吗?你们怎么能确定每人分到是 块?
预设:拼在一起。
4
3
5. 通过刚才的动手操作,你能说说“ 块”可以怎么理解吗?
4
3
6. 小结:把3块月饼平均分给4个人,每人分得 块。
板书:3÷4= (块)
4
1
4
3
二、在解决稍复杂的实际问题中,
深化对分数意义的理解
请小组内交流想法
(二)巩固用分数表示商
① 把这桶饼干平均放在5个保鲜盒中,平均每个保鲜盒放多少kg?
② 马腾从家到学校走了15分钟,他平均每分钟走多少km?
3÷5= (kg)
5
3
1÷15= (km)
15
1
三、在理解分数意义的基础上,
探究分数与除法的关系
1. 提问:观察这几个除法算式,你认为除法与分数有怎样的关系?
预设:被除数相当分数的分子,除数相当于分数的分母。
2. 提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
a
板书: a÷b=
b
3. 提问:a、b可以是任何数,对吗?
4. 小结:在除法中,0不能做除数,分数中的分母,相当于除法中的
除数,所以分母不能是0。
板书:(b≠0)
被除数
板书:被除数÷除数=
除数
四、综合应用,巩固理解分数与
除法的关系
1. 教材第50页,“做一做”。
2. 教材第51页练习十二,第1题。
这些葡萄干平均装在2个袋子里,每袋重多少千克?
平均装在3个袋子中呢?
在下面括号里填上适当的数。
7÷13= =( )÷( ) ( )÷7=
8
5
( )
( )
( 4 )
( 7 )
7
13
5
8
4
1÷2= (kg)
2
1
1÷3= (kg)
3
1
1. 填空。
(1)除法运算中的被除数相当于分数的( ),除
数相当于分数的( ),用字母表示为a÷b=
(b≠0)。
(2)2÷7= ( )÷9==
12÷( )= =( )÷( )
16
分子
分母
7
19
15
(3) 把18颗糖平均分给6个小朋友,每个小朋友分得( )颗糖,每个小朋友分得的糖数占总数的 。
(4) 把3块月饼平均分成5份,每份是 块,也就是1块的 ,每份是3块的 。
3
(5) kg表示把3 kg平均分成( )份,取其中的( )份,每份是( )kg;也可以表示把( )kg平均分成( )份,取其中的( )份,即( )kg。
(6) 将3 m长的彩带平均分成7段,每段是全长的 ,每段长 m。
8
1
1
8
3
运用分数与除法的关系解决问题
3. 一辆汽车15分钟行了24 km。
(1)这辆汽车平均每分钟行多少千米?
(2)这辆汽车每行1 km需要多少分钟?
(1)24÷15= (千米)
(2)15÷24= (分钟)
4. 龙眼是莆田的四大名果之一,驰名中外。幼儿园王阿姨买了4袋同样的龙眼,每袋1.5kg。她要把这些龙眼平均分给5个小朋友,每个小朋友分到多少千克龙眼?每个小朋友分到几袋龙眼?
1.5×4÷5= (kg)
4÷5= (袋)
运用锯木头的规律解决分数问题
5. 把一根粗细均匀的木头锯成8段,一共用了3分钟。平均每锯一次用多少分钟?
3÷(8-1)= (分钟)
6. 甲、乙两地相距64 km,走完全程,甲需8小时,乙需9小时。甲、乙两人每小时各走全程的几分之几?甲1小时走多少千米?乙走1 km要用几分之几小时?
1÷8= 1÷9= 64÷8=8(千米)
9÷64= (小时)
所以甲每小时走全程的 ,乙每小时走全程的 ,甲1小时走8千米,乙走1 km要用 小时。
这节课你有什么收获?还有什么疑问吗?
课堂小结
谢 谢 观 看!
谢谢
21世纪教育网(www.21cnjy.com) 中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?
欢迎加入21世纪教育网教师合作团队!!月薪过万不是梦!!
详情请看:
https://www.21cnjy.com/help/help_extract.php中小学教育资源及组卷应用平台
第3课时 分数与除法的关系的应用
【教学内容】
教科书第50页例3及相关练习。
【教学目标】
1.进一步理解分数与除法的关系,并能运用这一关系解决相关的实际问题。
2.培养学生的探索精神和类推能力。
【教学重点】
求一个数是另一个数的几分之几的应用题。
【教学难点】
运用分数与除法的关系解决实际问题。
【教学过程】
一、创设情境
1.口答。
30分米=( )米180分钟=( )小时
引导学生回顾把低级单位名数改写成高级单位名数的方法。
2.说一说:分数与除法有什么关系?
3.用分数表示下面各算式的商。
7÷94÷78÷15
师:这节课学习“分数与除法的关系的应用”。
(板书课题:分数与除法的关系的应用)
二、探究新知
1.课件出示例3。
(1)组织学生读题,理解题意。
(2)在小组中交流讨论,说一说鹅的只数与鸭的只数的关系。
学生可能会说:
①求养鹅的只数是鸭的几分之几,就是求7只是10只的几分之几,把10只看作一个整体,平均分成10份,每份1只,7只就是这个整体的710。②根据分数与除法的关系,求7只是10只的几分之几,可以用7÷10。
③鸡的只数是鸭的只数的20÷10=2倍。
(3)师:上面两个问题有什么关系?(都是用除法算的。)
(4)师:你还能提出其他数学问题并解答吗?
组内提问,相互解答。
2.课件出示练习十二第5题。
启发学生分析。师:这道题把谁与谁比?
鼓励学生从不同角度思考,看谁的解法好?(组织学生讨论解题方法。)
讨论后师生共同评价,主要有两种方法:
(1)从分数定义入手,求月球的质量是地球质量的几分之几。
(2)从倍数关系入手,求月球的质量是地球质量的几分之几,是以地球质量为标准,可以用除法计算。
三、课堂小结
通过这节课的学习,你有什么收获?
【教学反思】
理解与掌握分数与除法的关系及其应用,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础。所以,分数与除法的关系及应用在整个教科书中起到了承上启下的重要作用。在教学过程中,能从整体上把握教科书,激励学生积极参与教学活动:问题让学生自己解决; 方法让学生自己探索;规律让学生自己发现;知识让学生自己获得。课堂上给了学生充足的思考时间和活动时间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。整个教学过程,结构严谨,层次分明,符合学生的认知规律,使学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)