26.2 第3课时 利用列表法求概率 课件(共35张PPT)

文档属性

名称 26.2 第3课时 利用列表法求概率 课件(共35张PPT)
格式 zip
文件大小 3.9MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2020-12-08 23:01:12

图片预览

文档简介

(共35张PPT)
第26章
概率初步
26.2
等可能情形下的概率计算
第3课时
利用列表法求概率
沪科版
九年级数学下册
教学课件
目录
1
新课目标
新课进行时
3
2
情景导学
4
CONTENTS
随堂演练
5
课后作业
6
知识小结
新课目标
1
学习目标
1.理解一元二次方程的概率.(难点)
2.根据一元二次方程的一般形式,确定各项系数.
3.理解并灵活运用一元二次方程概念解决有关问题.
(重点)
情景导学
2
导入新课
我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.
思考:那么求出概率
大小有什么方法呢
情境引入
小明
小颖
小凡
连续抛掷两枚均匀的硬币,如果两枚正面朝上,则小明获胜;如果两枚反面朝上,则小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜.
做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:
问题引入
这个游戏公平吗?
新课进行时
3
讲授新课
用列表法求概率
互动探究
问题1
同时掷两枚硬币,试求下列事件的概率:
(1)两枚两面一样;
(2)一枚硬币正面朝上,一枚硬币反面朝上;
开始






P(两面都一样)=
P(两面不一样)=
还有别的方法求下列事件的概率吗?












第1枚硬币

2
枚硬币












还可以用列表法求概率
问题2
怎样列表格?
一个因素所包含的可能情况
另一个因素所包含的可能情况
两个因素所组合的所有可能情况,即n
列表法中表格构造特点:
说明:如果第一个因素包含2种情况;第二个因素包含3种情况;那么所有情况n=2×3=6.
典例精析
例1
同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1,2,···,6.试分别计算如下各随机事件的概率.
(1)抛出的点数之和等于8;
(2)抛出的点数之和等于12.
分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1,2,···,6中的每一种情况,第2枚骰子也可能掷出1,2,···,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:
第2枚
骰子
第1枚骰子


1
2
3
4
5
6
1
2
3
4
5
6
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(4,2)
(5,2)
(6,2)
(4,3)
(5,3)
(6,3)
(4,4)
(5,4)
(6,4)
(4,5)
(5,5)
(6,5)
(4,6)
(5,6)
(6,6)
解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.
(1)抛出点数之和等于8的结果有(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为
(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出
的点数之和等于12的这个事件发生的概率为
当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.
归纳总结
例2:
一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?
1
2
结果
第一次
第二次
解:利用表格列出所有可能的结果:

红1
红2

红1
红2
(白,白)
(白,红1)
(白,红2)
(红1,白)
(红1,红1)
(红1,红2)
(红2,白)
(红2,红1)
(红2,红2)
变式:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?
解:利用表格列出所有可能的结果:

红1
红2

红1
红2
(白,红1)
(白,红2)
(红1,白)
(红1,红2)
(红2,白)
(红2,红1)
结果
第一次
第二次
例3.同时掷两个质地均匀的骰子,计算下列事件的概率:
(1)两个骰子的点数相同
(2)两个骰子的点数之和是9
(3)至少有一个骰子的点数为2
1
2
3
4
5
6
1
2
3
4
5
6






(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。
(1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)=
=
(2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)=
=
(3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=
想一想:什么时候用“列表法”方便,什么时候用“树形图”方便?
当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法
当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图
例4
甲乙两人要去风景区游玩,仅直到每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如比第1辆车好,就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适度较好的车?
解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:
(上中下),
(上下中),
(上下),
(中下上),
(下上中),
(下中上).
假定6种顺序出现的可能性相等,
在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:
顺序


上中下
上下中
中上下
中下上
下上中
下中上












甲乘到上等、中等、下等3种汽车的概率都是

乙乘坐到上等汽车的概率是
,乘坐到下等汽车的概率只有
答:乙的乘车办法有有利于乘上舒适度较好的车.
随堂演练
4
当堂练习
1.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是(

2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是(

C
D
A.
B.
C.
D.
A.
B.
C.
D.
3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.
(1)摸出两张牌的数字之和为4的概念为多少?
(2)摸出为两张牌的数字相等的概率为多少?
3
2
(2,3)
(3,3)
(3,2)
(3,1)
(2,2)
(2,1)
(1,3)
(1,2)
(1,1)
1
3
2
1
第二张牌
的牌面数字
第一张牌的
 牌面数字
解:(1)P(数字之和为4)=
.
(2)P(数字相等)=
4.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?
1
2
3
4
5
6
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)






解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.
满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则
P(A)=
=
4.在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?
知识小结
5
课堂小结
列举法
基本步骤
前提条件
常用
方法
直接列举法
列表法
画树状图法
列举(列表或画树状图);
确定m、n值,代入概率公式计算.
确保试验中每种结果出现的可能性大小相等.
涉及一个因素时直接利用公式计算
涉及两个或两个以上的因素
涉及两个因素且可能出现的结果数目较多
课后作业
6
课后作业
1、完成教材本课时对应习题;
2、完成同步练习册本课时的习题。
谢谢欣赏
THANK
YOU
FOR
LISTENING
谢谢大家!
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?欢迎加入21世纪教育网教师合作团队!!!月薪过万不是梦!!!