26.3 用频率估计概率 课件(共40张PPT)

文档属性

名称 26.3 用频率估计概率 课件(共40张PPT)
格式 zip
文件大小 3.4MB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2020-12-09 12:25:05

图片预览

文档简介

(共40张PPT)
第26章
概率初步
26.3
用频率估计概率
沪科版
九年级数学下册
教学课件
目录
1
新课目标
新课进行时
3
2
情景导学
4
CONTENTS
随堂演练
5
课后作业
6
知识小结
新课目标
1
(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.
(2)会用频率估计概率.
重点:理解当试验次数较大时,试验频率趋于理论概率.
难点:用频率估计概率的思想方法解决相关实际问题.
学习目标
学习重、难点:
情景导学
2
导入新课
问题1:
400个同学中,一定有2个同学的生日相同(可以不同年)吗?
那么300个同学中一定有2个同学的生日相同吗?
有人说:“50个同学中,就很可能有2个同学的生日相同.”这话正确吗?
调查全班同学,看看有无2个同学的生日相同.
问题2:要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢?
新课进行时
3
讲授新课
用频率估计概率
掷硬币试验
试验探究
(1)抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”
的次数,并算出“正面朝上”的频率,完成下表:
累计抛掷次数
50
100
150
200
250
300
350
400
“正面朝上”的频数
“正面朝上”的频率
23
46
78
102
123
150
175
200
0.45
0.46
0.52
0.51
0.49
0.50
0.50
0.50
(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.
频率
试验次数
(3)在上图中,用红笔画出表示频率为
的直线,你发现了什么?
试验次数越多频率越接近0.
5,即频率稳定于概率.
频率
试验次数
(4)下表是历史上一些数学家所做的掷硬币的试验数据,
这些数据支持你发现的规律吗?
试验者
抛掷次数n
“正面向上”次数m
“正面向上”
频率(
)
棣莫弗
2048
1061
0.518


4040
2048
0.5069


10000
4979
0.4979
皮尔逊
12000
6019
0.5016
皮尔逊
24000
12012
0.5005
支持
归纳总结
通过大量重复试验,可以用随机事件发生的频率
来估计该事件发生的概率.
数学史实
人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律.这称为大数法则,亦称大数定律.
频率稳定性定理
思考
抛掷硬币试验的特点:
1.可能出现的结果数__________;
2.每种可能结果的可能性__________.
相等
有限
问题
如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?
从一定高度落下的图钉,着地时会有哪些可能的结果?
其中顶帽着地的可能性大吗?
 做做试验来解决这个问题.
图钉落地的试验
试验探究
试验累计次数
20
40
60
80
100
120
140
160
180
200
钉帽着地的次数(频数)
9
19
36
50
61
68
77
84
95
109
钉帽着地的频率(
%)
45
47.5
60
62.5
61
57
55
52.5
53
54.5
试验累计次数
220
240
260
280
300
320
340
360
380
400
钉帽着地的次数(频数)
122
135
143
155
162
177
194
203
215
224
钉帽着地的频率(%)
55
56.25
55
55
54
55
57
56.4
56.6
56
(1)选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表.
56.5
(%)
(2)根据上表画出统计图表示“顶帽着地”的频率.
(3)这个试验说明了什么问题.
在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数56.5%附近.
一般地,在大量重复试验中,随机事件A发生的频率
(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即
P(A)=P.
归纳总结
判断正误
(1)连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1
(2)小明掷硬币10000次,则正面向上的频率在0.5附近
(3)设一大批灯泡的次品率为0.01,那么从中抽取1000只灯泡,一定有10只次品。
错误
错误
正确
练一练
例1
某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:
(1)填表(精确到0.001);
(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?
练习罚篮次数
30
60
90
150
200
300
400
500
罚中次数
27
45
78
118
161
239
322
401
罚中频率
0.900
0.750
0.867
0.787
0.805
0.797
0.805
0.802
解:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.
例2
瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象.而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”.
由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计.
某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:
抽取瓷砖数n
100
200
300
400
500
600
800
1000
2000
合格品数m
95
192
287
385
481
577
770
961
1924
合格品率
(1)计算上表中合格品率的各频率(精确到0.001);
(2)估计这种瓷砖的合格品率(精确到0.01);
(3)若该厂本月生产该型号瓷砖500000块,试估计合格品数.
(1)逐项计算,填表如下:
抽取瓷砖数n
100
200
300
400
500
600
800
1000
2000
合格品数m
95
192
287
385
481
577
770
961
1924
合格品率
0.950
0.960
0.957
0.963
0.962
0.962
0.963
0.961
0.962
(2)观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率
稳定在0.962的附近,
所以我们可取p=0.96作为该型号瓷砖的合格品率的估计.
(3)500000×96%=480000(块),可以估计该型号合格品数为480000块.
频率与概率的关系
联系:
频率
概率
事件发生的频繁程度
事件发生的
可能性大小
在实际问题中,若事件的概率未知,常用频率作为它的估计值.
区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观
存在的,与每次试验无关.
稳定性
大量重复试验
随堂演练
4
当堂练习
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1
000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼
尾,鲢鱼
尾.
310
270
2.抛掷硬币“正面向上”的概率是0.5.如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?
答:这是因为频数和频率的随机性以及一定的规律性.或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生.
3.在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球次数m
65
124
178
302
481
599
1803
摸到白球概率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
(1)请估计:当n很大时,摸到白球的频率将会接近
(精确到0.1);
(2)假如你摸一次,估计你摸到白球的概率
P(白球)=
.
0.6
0.6
摸球的次数n
100
200
300
500
800
1000
3000
摸到白球次数m
65
124
178
302
481
599
1803
摸到白球概率
0.65
0.62
0.593
0.604
0.601
0.599
0.601
51.54
500
44.57
450
39.24
400
35.32
350
30.93
300
24.25
250
19.42
200
15.15
150
0.105
10.5
100
0.110
5.50
50
柑橘损坏的频率(

损坏柑橘质量(m)/千克
柑橘总质量(n)/千克
n
m
0.101
0.097
0.097
0.103
0.101
0.098
0.099
0.103
4.填表:
由上表可知:柑橘损坏率是
,完好率是
.
0.10
0.90
5.某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
分析
根据上表估计柑橘损坏的概率为0.1,则柑橘完好的概率为0.9.
解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克,完好柑橘的实际成本为
设每千克柑橘的销价为x元,则应有
(x-2.22)×9000=5000,解得
x≈2.8.
因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.
6.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重
2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这池塘中鱼的重量.
解:先计算每条鱼的平均重量是:
(2.5×40+2.2×25+2.8×35)÷(40+25+35)
=2.53(千克);
所以这池塘中鱼的重量是2.53×100000×
95%
=240350(千克).
知识小结
5
课堂小结
频率估计概率
大量重复试验
求非等可能性事件概率
列举法
不能适应
频率稳定
常数附近
统计思想
用样本(频率)估计总体(概率)
一种关系
频率与概率的关系
频率稳定时可看作是概
率但概率与频率无关
课后作业
6
课后作业
1、完成教材本课时对应习题;
2、完成同步练习册本课时的习题。
谢谢欣赏
THANK
YOU
FOR
LISTENING
谢谢大家!
21世纪教育网(www.21cnjy.com)
中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?欢迎加入21世纪教育网教师合作团队!!!月薪过万不是梦!!!