平方根第一课时(数学初二年级)
[教材简解]
平方根是苏教版数学八年级上册第四章第一节内容,隶属于“数与代数”领域,重点结合实际问题情景认识算术平方根、平方根的意义,能够对算术平方根进行符号表示,能够利用概念的本质探获求算术平方根、平方根的方法,理解算术平方根、平方根的性质。本节共二课时,本课为第一课时,从学生熟悉的正方形面积与边长之间的关系入手提出已知面积探求边长的问题,通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过对这一节课的学习,既可以让学生了解平方根的概念,会用符号表示非负数的平方根,又可以渗透化归思想(将求算术平方根的运算转化为求幂底数的运算)将为学生以后学习立方根奠定基础;同时这一节也是联系数学与生活的桥梁。
[目标预设]
1.
学生能理解平方根概念的生成过程,会用符号表示一个非负数的平方根;
2.
在教师的指导下,经历观察、交流、猜想等活动得出平方根概念,培养学生的合情推理与逆向思维的能力。
3.会求一个非负数的平方根,通过理解为什么要学习平方根培养学生的理性精神。
[重点]了解开方与乘方互为逆运算,能熟练地求某些非负数的平方根。
[难点]
利用平方根定义解决问题。
[设计理念]
本节课采取教师启发引导与学生探究相结合的方式,使学生亲身体验得到平方根概念的生成过程,注重学生数学活动经验的积累。促使学生采取积极主动、勇于探索的学习方式进行学习,为学生的终身发展奠基。根据“以学定教”的原则,及时调整教学方案,使学生始终能主动地参与学习,成为学习的主人。
[设计思路]
启发学生对问题的兴趣,促进其对问题进行思考。让学生自己总结、交流,培养学生的概括能力和口头表达能力,培养自我反馈、自主发展的意识。
[教学过程]
教学内容
学生活动
创设情景,感悟新知情境一:设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB,A′B′的长吗?设计意图:通过实际情境,让学生发现AB,A′B′的长说不出来,制造认知冲突,激发好奇心,调动学生的学习积极性.
积极思考,跃跃欲试.
情境二:类似地,我们曾研究a2=2,那么a=?如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根.如果x2=a,那么x就叫做a的平方根,也称为二次方根.例如:2?=4,(-2)?=4,±2叫做4的平方根.10?=100,(-10)?=100,±10叫做100的平方根.13?=169,(-13)?=169,±13叫做169的平方根.一个正数的平方根有2个,它们互为相反数.一个正数a的正的平方根,记作“”,正数a的负的平方根记作“-”.这两个平方根合起来记作“±”,读作“正、负根号a”
.
设计意图:通过实际情境,让学生发现用符号表示一个正数的平方根的必要性,并自己表示一些正数的平方根,加深对平方根的感性认识。情境三:在下列各括号中能填写适当的数使等式成立吗?如果能,请填写;如果不能,请说明理由,并与同学交流.( )2=9,( )2=5,( )2=;( )2=0,( )2=-,( )2=-4.设计意图:通过问题,让学生了解求平方根就是知道幂,指数为2,求底数,让学生从本质上理解平方根概念.例题讲解例1 求下列各数的平方根.(1)25;(2);(3)15;(4)0.09.补充例题(可以选用).下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由.(1);(2).
设计意图:引导学生求出一个数的平方根,并口述理由,加深学生对平方根概念的理解.练习:课本95页练习.设计意图:引导学生解决不同类型的题目,加深学生对平方根概念的理解
.
总结1.说说你对平方根的理解.2.开平方运算与平方运算有什么联系?有什么区别?设计意图:回顾所学知识,梳理求一个数的平方根的方法,同时,回顾得到平方根概念的过程,让学生体会分类思想和逆向思维。.课后作业习题4.1第1题.设计意图:加深学生对平方根概念的理解,并提高学生的学习兴趣.
思考、分析、讨论、交流.探索交流后总结出以下结论:一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根.分析:1.判断这些数是否都有平方根;2.根据规律各个数的平方根有几个?自主完成,完成后交流展示,体会体验成功的感受.尝试对知识方法进行归纳、提炼、总结,形成理性的认识,
内化数学的方法和经验.
1