苏科版八年级数学下册第12章《二次根式》的题型总结(Word版 无答案)

文档属性

名称 苏科版八年级数学下册第12章《二次根式》的题型总结(Word版 无答案)
格式 zip
文件大小 171.1KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-12-12 21:57:30

图片预览

文档简介

【二次根式专项练习】
一.
利用二次根式的双重非负性来解题((a≥0),即一个非负数的算术平方根是一个非负数。)
1.下列各式中一定是二次根式的是(
)。
A、;
B、;
C、;
D、
2.等式=1-x成立的条件是_____________.
3.当x____________时,二次根式有意义.
4.x取何值时,下列各式在实数范围内有意义。
(1)
(2)
(3)
(4)若,则x的取值范围是
(5)若,则x的取值范围是

6.若有意义,则m能取的最小整数值是
;若是一个正整数,则正整数m的最小值是________.
7.当x为何整数时,有最小整数值,这个最小整数值为

8.
若,则=_____________;若,则
9.设m、n满足,则=

10.
若三角形的三边a、b、c满足=0,则第三边c的取值范围是
11.若,且时,则m取值范围为(

二.利用二次根式的性质=|a|=(即一个数的平方的算术平方根等于这个数的绝对值)来解题
1.已知=-x,则(  )
2..已知a )
3.若化简|1-x|-的结果为2x-5则(

5、化简的结果是(

6、已知:=1,则的取值范围是(
)。
7、化简的结果为(

三.二次根式的化简与计算(主要依据是二次根式的性质:()2=a(a≥0),即以及混合运算法则)
(一)化简与求值
1.把下列各式化成最简二次根式:(1)
(2)
(3)
(4)
下列哪些是同类二次根式:
(1),,,,,,;
(2)
,,a
3.计算下列各题:
(1)6
(2);
(3)
(4)
(5)-
(6)
4.计算(1)2
已知,则x等于(
 

(二)先化简,后求值:
1.
直接代入法:已知
求(1)
(2)
2.变形代入法:
(1)变条件:
①已知:,求的值。
②.已知:x=,求3x2-5xy+3y2的值
(2)变结论:
①设=a,=b,则=

②.已知,求

③已知,,(1)求的值
(2)求的值
五.关于求二次根式的整数部分与小数部分的问题
1.估算-2的值在哪两个数之间(  )A.1~2
B.2~3
C.
3~4
D.4~5
2.若的整数部分是a,小数部分是b,则
3.已知9+的小数部分分别是a和b,求ab-3a+4b+8的值
4.若a,b为有理数,且++=a+b,则ba=
.
六.二次根式的比较大小
(1)
(2)-5
(3)
设a=,
,,
则(

比较大小:和.
比较大小:与(其中n为正整数).
七.实数范围内因式分解:
1.
9x2-5y2
2.
4x4-4x2+1
3.
x4+x2-6
【综合】
1.
已知,求的值。
2.
已知:为实数,且,化简:。
3.
已知的值。
4.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是…………(  )
5..已知关于的一次函数的图象如图所示,则可化简为
?.
6.设,,,…,,设,则=
(用含n的代数式表示,其中n为正整数)
7.已知,且,则的值是(