6.1.2 平均数 课件(共18张PPT)

文档属性

名称 6.1.2 平均数 课件(共18张PPT)
格式 pptx
文件大小 735.7KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2020-12-12 06:08:49

图片预览

文档简介

请同学们回忆:什么是算术平均数?什么是加权平均数?
请同学们各举一个有关算术平均数和加权平均数的实例,与同伴交流.
导入新课
6.1 平均数
学习目标
1.掌握算术平均数和加权平均数的概念,会求一组数据的算术平均数和加权平均数.(重点)
2.会用算术平均数和加权平均数解决实际生活中的问题.(难点)
做一做
某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分 10 分).其中三个班级的成绩分别如下:
?
服装统一
进退场有序
动作规范
动作整齐
一班
9
8
9
8
二班
10
9
7
8
三班
8
9
8
9
(1)若将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?
解:一班的广播操成绩为:
9×10%+8×20%+9×30%+8×40%﹦8.4(分)
二班的广播操成绩为:
10×10%+9×20%+7×30%+8×40%﹦8.1(分)
三班的广播操成绩为:
8×10%+9×20%+8×30%+9×40%﹦8.6(分)
因此,三班的广播操成绩最高.
做一做
某学校进行广播操比赛,比赛打分包括以下几项:服装统一、进退场有序、动作规范、动作整齐(每项满分 10 分).其中三个班级的成绩分别如下:
?
服装统一
进退场有序
动作规范
动作整齐
一班
9
8
9
8
二班
10
9
7
8
三班
8
9
8
9
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案.根据你的评分方案,哪一个班的广播操比赛成绩最高?与同伴进行交流.
议一议
小颖家去年的饮食支出为3600元,教育支出为1200元,其他支出为7200元,小颖家今年的这三项支出依次比去年增长9%,30%,6%,小颖家今年的总支出比去年增长的百分数是多少?
以下是小明和小亮的两种解法,谁做得对?说说你的理由.
小明: (9%+30%+6%)= 15%
小亮:
由于小颖家去年的饮食、教育和其他三项支出金额不等,因此,饮食、教育和其他三项支出的增长率“地位”不同,它们对总支出增长率的“影响”不同,不能简单地用算术平均数计算总支出的增长率,而应将这三项支出金额3600,1200,7200分别视为三项支出增长率的“权”,从而总支出的增长率为小亮的解法是对的.
1.小明骑自行车的速度是15千米/时,步行的速度是5千米/时.
(1)如果小明先骑自行车1小时,然后又步行了1小时,那么他的平均速度是多少?
(2)如果小明先骑自行车2小时,然后步行了3小时,那么他的平均速度是多少?你能从权的角度来理解这样的平均速度吗?
(3)举出生活中加权平均数的实例,并解决之.
2. 课本P140随堂练习第1,2题.
(2)若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是( )
A.(x+y)/2 B.(x+y)/(m+n)
C.(mx+ny)/(x+y) D.(mx+ny)/(m+n)
1.(1)某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是( )
A.84 B. 86 C. 88 D. 90
D
D
当堂练习
2.李大伯有一片果林,共有80棵果树.某日,李大伯开始采摘今年第一批成熟的果子,他随机选取2棵果树共摘得10个果子,质量分别为(单位:㎏):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23.以此估算,李大伯收获的这批果子的单个质量和总质量分别约为(  )
A.0.25 ㎏,200 ㎏ B.2.5 ㎏,100 ㎏
C.0.25 ㎏,100 ㎏ D.2.5 ㎏,200 ㎏
C
3.已知:x1,x2,x3,…,?x10的平均数是a,x11,x12,x13,…?,x30
的平均数是b,则x1,x2,x3,…?,x30的平均数(??? ?)
A.(a+b)??? B.(a+b)??
C.(a+3b)/3?? ? ? D.(a+2b)/3
D
4.若x1,x2,…,?xn的平均数为a,
(1)则数据x1+3,x2+3,…,xn+3的平均数为 .
(2)则数据10x1,10x2,…?,10xn?的平均数为 .
a+3
10a
5.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:
应试者





85
83
78
75

73
80
85
82
如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
解:听、说、读、写的成绩按照3∶3∶2∶2的
比确定,则甲的平均成绩为
85×3+83×3+78×2+75×2
3+3+2+2

81,
乙的平均成绩为
73×3+80×3+85×2+82×2
3+3+2+2

79.3.
显然甲的成绩比乙的高,所以从成绩看,应该录取甲.
6.一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:
选手
演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
请决出两人的名次.
解:选手A的最后得分是
85×50%+95×40%+95×10%
50%+40%+10%
=42.5+38+9.5
=90.
选手B的最后得分是
95×50%+85×40%+95×10%
50%+40%+10%
=47.5+34+9.5
=91.
由上可知选手B获得第一名,选手A获得第二名.
选手
演讲内容
(50%)
演讲能力
(40%)
演讲效果
(10%)
A
85
95
95
B
95
85
95
课堂总结
平均数
算术平均数
加权平均数
谢谢
21世纪教育网(www.21cnjy.com) 中小学教育资源网站
有大把高质量资料?一线教师?一线教研员?
欢迎加入21世纪教育网教师合作团队!!月薪过万不是梦!!
详情请看:
https://www.21cnjy.com/help/help_extract.php