如果我是双曲线
你就是那渐近线
如果我是反比例函数
你就是那坐标轴
虽然我们有缘
能够身在同一个平面
然而我们又无缘
漫漫长路无交点
为何看不见
等式成立要条件
难道正如书上说的
无限接近不能达到
为何看不见
明月也有阴晴圆缺
此事古难全
但愿千里共婵娟
悲伤的
双曲线
反比例函数的图像和性质
学习目标
01
体会并了解反比例函数的图像的意义。
能描点画出反比例函数的图像。
通过反比例函数的图像的分析,探索并掌握反比例函数的图像的性质。.
02
03
( ,且k是常数)
函数解析式
比例系数
因变量
自变量
列表、描点、连线
已知函数
是反比例函数,则m=________
-2
1
2
3
4
5
6
-1
-3
-2
-4
-5
-6
1
2
3
4
-1
-2
-3
-4
0
-6
-5
5
6
y
x
x
y =
x
6
y =
x
6
1
2
3
4
5
6
-1
-3
-2
-4
-5
-6
1
2
3
4
-1
-2
-3
-4
0
-6
-5
5
6
x
y
1
2
3
4
5
6
-5
-1
-2
-3
-4
-6
…
…
…
-1
-6
6
3
-3
2
-2
1.5
-1.5
1.2
-1.2
1
…
…
y =
x
6
…
-1.5
6
2
1.5
1.2
1
-6
-3
-2
-1.2
-1
3
y =
x
6
有两条曲线共同组成一个反比例函数的图像,叫双曲线。
1.当k>0时,同一象限内函数值y随自变量x的增大而减小;
2.当k<0时,同一象限内,函数值y随自变量x的增大而增大。
y =
x
6
x
y
0
y
x
y
x
6
y =
0
以四人小组为单位,合作作图
(两人列表,两人描点作图)
画出反比例函数 和 的图像
1、反比例函数图像是什么形状?
2、你认为做反比例函数图象时应注意哪些问题?
3、反比例函数的图象有两个分支,它们分布的象限与k的符号有何关系?
4、反比例函数的图象,当自变量x的值逐渐增大时,y如何变化?这种变化与k的取值有关吗?
合作探究:
请比较反比例函数 、 、 、 的图像
1、反比例函数图像是双曲线
2、你认为做反比例函数图象时应注意的问题:
3、反比例函数的图象有两个分支,它们分布的象限与k的符号:
当 时,在 内,
随 的增大而 .
O
观察反比例函数 的图象,说出y与x之间的变化关系:
A
B
O
C
D
A
B
C
D
减少
每个象限
当 时,在 内,
随 的增大而 .
增大
每个象限
1
2
3
4
5
6
-1
-3
-2
-4
-5
-6
1
2
3
4
-1
-2
-3
-4
0
-6
-5
5
6
y
x
1
2
3
4
5
6
-1
-3
-2
-4
-5
-6
1
2
3
4
-1
-2
-3
-4
0
-6
-5
5
6
x
y
y =
x
6
y =
x
6
⑴双曲线 上任一点(x,y)关于原点的对称点(-x,-y)在另一分支上.
即:中心对称性 --两个分支关于原点成中心对称.
P(6,1)
P(-1,6)
⑵轴对称性---对称轴是各象限的角平分线所在直线y=x或y=-x
∵(x,y)在图象上,
∴
∴
∴(-x,-y)也在图象上.
P(1,6)
P(-6,1)
y=x
y=-x
y=x
y=-x
1.函数 的图象在第_____象限,在每个象限内,y 随 x 的增大而_____ .
y =
x
5
2.函数 的图象在二、四象限,则m的取值范围是 ____ .
3.对于函数 ,当 x<0时,y 随x的增大而____,这部分图象在第 _____象限.
4.反比例函数 , 它的图象在一、三象限,则m= ____
y =
1
2x
m-2
x
y =
二,四
减小
m < 2
三
增大
3
随堂练习
x
k
5. 已知k<0,则函数 y1=kx,y2= - 在同一坐标系中的图象大致是 ( )
x
y
0
x
y
0
x
y
0
x
y
0
D
A
B
C
D
作 业 布 置
在反比例函数y= 图象上任取一点向x轴做垂线,并连结原点,所得面积与k有何关系?再向y轴做垂线,两条垂线与坐标轴所围成的矩形面积呢?
挑战极限