(共40张PPT)
新人教A版高二数学同步测试(1)—(2-1第一章)
说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.
一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).
1.函数f(x)=x|x+a|+b是奇函数的充要条件是 ( )
A.ab=0 B.a+b=0 C.a=b D.a2+b2=0
答案
1.函数f(x)=x|x+a|+b是奇函数的充要条件是 ( )
A.ab=0 B.a+b=0 C.a=b D.a2+b2=0
1.D;解析:若a2+b2=0,即a=b=0时,f(-x)=(-x)|x+0|+0=-x|x|=-f(x)
∴a2+b2=0是f(x)为奇函数的充分条件.又若f(x)为奇函数即f(-x)=-x|(-x)+a|+b=-(x|x+a|+b),则必有a=b=0,即a2+b2=0,∴a2+b2=0是f(x)为奇函数的必要条件
2.“至多有三个”的否定为 ( )
A.至少有三个 B.至少有四个 C.有三个 D.有四个
2.“至多有三个”的否定为 ( )
A.至少有三个 B.至少有四个 C.有三个 D.有四个
2.B;提示:这是一个含有量词的命题的否定.
3.有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p:肖像在这个盒子里;银盒上写有命题q:肖像不在这个盒子里;铅盒上写有命题r:肖像不在金盒里.p、q、r中有且只有一个是真命题,则肖像在 ( )
A.金盒里 B.银盒里
C.铅盒里 D.在哪个盒子里不能确定
3.有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p:肖像在这个盒子里;银盒上写有命题q:肖像不在这个盒子里;铅盒上写有命题r:肖像不在金盒里.p、q、r中有且只有一个是真命题,则肖像在 ( )
A.金盒里 B.银盒里
C.铅盒里 D.在哪个盒子里不能确定
3.B;本题考查复合命题及真值表.解析:∵p=非r,∴p与r一真一假,而p、q、r中有且只有一个真命题,∴q必为假命题,∴非q:“肖像在这个盒子里”为真命题,即:肖像在银盒里.评述:本题考查充要条件的基本知识,难点在于周期概念的准确把握.
4.不等式 对于恒成立,那么的取值范围是 ( )
A. B. C. D.
4.B;解析:注意二次项系数为零也可以
5.“a和b都不是偶数”的否定形式是 ( )
A.a和b至少有一个是偶数 B.a和b至多有一个是偶数
C.a是偶数,b不是偶数 D.a和b都是偶数
5.“a和b都不是偶数”的否定形式是 ( )
A.a和b至少有一个是偶数 B.a和b至多有一个是偶数
C.a是偶数,b不是偶数 D.a和b都是偶数
5.A;解析:对“a和b都不是偶数”的否定为“a和b不都不是偶数”,等价于“a和b中至少有一个是偶数”.
6.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而他的实际效果大哩,原来这句话的等价命题是 ( )
A.不拥有的人们不一定幸福 B.不拥有的人们可能幸福
C.拥有的人们不一定幸福 D.不拥有的人们不幸福
6.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然而他的实际效果大哩,原来这句话的等价命题是 ( )
A.不拥有的人们不一定幸福 B.不拥有的人们可能幸福
C.拥有的人们不一定幸福 D.不拥有的人们不幸福
6.D;解析:该题考察的是互为逆否命题的真值相同,也就是在选项中找到该命题逆否命题.
7.若命题“p或q”为真,“非p”为真,则 ( )
A.p真q真 B.p假q真 C.p真q假 D.p假q假
7.若命题“p或q”为真,“非p”为真,则 ( )
A.p真q真 B.p假q真 C.p真q假 D.p假q假
7.B;解析:由“非p”为真可得p为假,若同时“p或q”为真,则可得q必须为真.
8.条件p: , ,
条件q: , ,则条件p是条件q的 ( )
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.即不充分也不必要条件
8.A;解析:由我们学习过的不等式的理论可得,但满足q: , ,但不满足q: , ,故选项为B.
9.2x2-5x-3<0的一个必要不充分条件是 ( )
A.-<x<3 B.-<x<0
C.-3<x< D.-1<x<6
9.2x2-5x-3<0的一个必要不充分条件是 ( )
A.-<x<3 B.-<x<0
C.-3<x< D.-1<x<6
9.D;解析:由2x2-5x-3<0,解得-<x<3,记为P,则①P A,②B P,B是P的充分非必要条件,③C P,C既不是P的充分条件,也不是P的必要条件,④D P,P D,D是P的必要不充分条件.
10.设原命题:若a+b≥2,则a,b 中至少有一个不小于1.则原命题与其逆命题的真假情况是 ( )
A.原命题真,逆命题假 B.原命题假,逆命题真
C.原命题与逆命题均为真命题 D.原命题与逆命题均为假命题
10.设原命题:若a+b≥2,则a,b 中至少有一个不小于1.则原命题与其逆命题的真假情况是 ( )
A.原命题真,逆命题假
B.原命题假,逆命题真
C.原命题与逆命题均为真命题 D.原命题与逆命题均为假命题
10. A;提示:举例:a=1.2,b=0.3,则a+b=1.5<2,∴逆命题为假.
二、填空题:请把答案填在题中横线上(每小题6分,共24分)
11.下列命题中_________为真命题.
①“A∩B=A”成立的必要条件是“AB”;
②“若x2+y2=0,则x,y全为0”的否命题;
③“全等三角形是相似三角形”的逆命题;
④“圆内接四边形对角互补”的逆否命题.
11.下列命题中_________为真命题.
①“A∩B=A”成立的必要条件是“AB”;
②“若x2+y2=0,则x,y全为0”的否命题;
③“全等三角形是相似三角形”的逆命题;
④“圆内接四边形对角互补”的逆否命题.
11.②④;
解析:本题是一道开放性题,考查四种命题间的关系及充要条件.
①A∩B=A A B但不能得出A B,∴①不正确;②否命题为:“若x2+y2≠0,则x,y不全为0”,是真命题;
③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题;
④原命题为真,而逆否命题与原命题是两个等价命题,∴逆否命题也为真命题.
12.若p:“平行四边形一定是菱形”,则“非p”为___ _____.
12.若p:“平行四边形一定是菱形”,则“非p”为___ _____.
12.平行四边形不一定是菱形;或至少有一个平行四边形不是菱形;
解析:本题考查复合命题“非p”的形式,p:“平行四边形一定是菱形”是假命题,这里“一定是”的否定是用“一定不是”还是“不一定是”?若为“平行四边形一定不是菱形”仍为假命题,与真值表相违,故原命题的“非p”为“平行四边形不一定是菱形”,是一个真命题.
第二种说法是命题是全称命题的简写形式,应用规则变化即可.
13.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则s是q的 条件,r是q的 条件,p是s的 条件.
13.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则s是q的 条件,r是q的 条件,p是s的 条件.
13.必要,充分,必要.
提示:画出箭头图.
14.设p、q是两个命题,若p是q的充分不必要条件,那么非p是非q的 条件.
14.设p、q是两个命题,若p是q的充分不必要条件,那么非p是非q的 条件
.14.必要不充分.
三、解答题:(解答应写出文字说明、证明过程或演算步骤(共76分).
15.(12分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;
(2)正偶数不是质数.
15.(12分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;
(2)正偶数不是质数
.15.本题考查四种命题间的关系.
解:(1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(假命题).
否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(假命题).
逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).
(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).
否命题:如果一个正数不是偶数,那么这个数是质数(假命题).
逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).
16.(12分)写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假.
(1)p:连续的三个整数的乘积能被2整除, q:连续的三个整数的乘积能被3整除;
(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形;
16.解:(1)根据真值表,复合命题可以写成简单形式:
p或q:连续的三个整数的乘积能被2或能被3整除.
p且q:连续的三个整数的乘积能被2且能被3整除.
非p:存在连续的三个整数的乘积不能被2整除.
∵连续的三整数中有一个(或两个)是偶数,而有一个是3的倍数,
∴p真,q真,∴p或q与p且q均为真,而非p为假.
(2)根据真值表,只能用逻辑联结词联结两个命题,不能写成简单形式:
p或q:对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形.
p且q:对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形.
非p:存在对角线互相垂直的四边形不是菱形.
∵p假q假,∴p或q与p且q均为假,而非p为真.
17.(12分)给定两个命题,
P:对任意实数都有 恒成立;Q:关于 X的方程 有实数根;如果P与Q中有且仅有一个为真命题,求实数a的取值范围.
17.解:对任意实数都有 恒成
立 ;关于X的方
程 有实数根 ;如
果P正确,且Q不准确有 如果Q正确,且P不正确有 所以实数的取值范围为
.
18.(12分)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么
(1)s是q的什么条件?
(2)r是q的什么条件?
(3)p是q的什么条件?
18.(12分)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么
(1)s是q的什么条件?
(2)r是q的什么条件?
(3)p是q的什么条件?
18.本题考查充要条件、充分条件、必要条件.对于这类问题,将语言叙述符号化,画出它们的综合结构图,再给予判定.
解:p、q、r、s的关系如图所示,由图可知
答案:(1)s是q的充要条件 (2)r是q的充要条件 (3)p是q的必要条件
19.(14分)设0
19.(14分)设020.(14分)求证:关于x的方程x2+2ax+b=0 有实数根,且两根均小于2的充分但不必要条件是a≥2且|b| ≤4..
20.(14分)求证:关于x的方程x2+2ax+b=0 有实数根,且两根均小于2的充分但不必要条件是a≥2且|b| ≤4..
20.解析:先证充分性,而必要性只需要通过举反例来否定.
先证明条件的充分性:
∴方程有实数根(1)
(2)
由①、②知“a≥2且|b|≤4” “方程有实数根,且两根均小于2”.
再验证条件不必要:
∵方程x2-x=0的两根为x1=0, x2=1,则方程的两根均小于2,而a=- <2,
∴“方程的两根小于2” “a≥2且|b|≤4”.
综上,a≥2且|b|≤4是方程有实数根且两根均小于2的充分但不必要条件.