1.1
菱形的性质与判定
一.选择题
1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A.
B.
C.5
D.4
2.菱形具有而平行四边形不一定具有的性质是( )
A.两组对边分别平行
B.两组对角分别相等
C.对角线互相平分
D.对角线互相垂直
3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1
B.2
C.3
D.4
4.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A.28°
B.52°
C.62°
D.72°
5.如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为( )
A.1:2
B.1:3
C.1:
D.1:
6.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是( )
A.(3,1)
B.(3,﹣1)
C.(1,﹣3)
D.(1,3)
7.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )
A.18
B.18
C.36
D.36
8.如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD是菱形的只有( )
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2
9.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )
A.4
B.
C.
D.5
二.填空题
10.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是
.
11.已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个菱形的边长为
cm.
12.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为
.
13.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:
,可使它成为菱形.
14.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是
.
15.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为
,面积为
.
16.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为
cm2.
17.如图,菱形ABCD的周长为8,两邻角的比为2:1,则对角线的长分别为
.
三.解答题
18.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求证:四边形ABCD是菱形;
(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
19.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.
20.如图,E,F是菱形ABCD对角线上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若∠DAB=60°,AD=6,AE=DE,求菱形BEDF的周长.
21.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.
(1)求证:四边形BEDF为菱形;
(2)如果∠A=100°,∠C=30°,求∠BDE的度数.
22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.
23.如图,菱形ABCD中,点E、F分别是BC、CD边的中点.求证:AE=AF.
参考答案
一.选择题
1.解:∵四边形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=,
∴,
∴DH=,
故选:A.
2.解:A、不正确,两组对边分别平行;
B、不正确,两组对角分别相等,两者均有此性质正确,;
C、不正确,对角线互相平分,两者均具有此性质;
D、菱形的对角线互相垂直但平行四边形却无此性质.
故选:D.
3.解:作F点关于BD的对称点F′,连接EF′交BD于点P,则PF=PF′.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=DF′=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=3.
∴EP+FP的最小值为3.
故选:C.
4.解:∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
∵,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=28°,
∴∠BCA=∠DAC=28°,
∴∠OBC=90°﹣28°=62°.
故选:C.
5.解:如图,设AC,BD相交于点O,
∵菱形ABCD的周长为8cm,
∴AB=BC=2cm,
∵高AE长为cm,
∴BE==1(cm),
∴CE=BE=1cm,
∴AC=AB=2cm,
∵OA=1cm,AC⊥BD,
∴OB==(cm),
∴BD=2OB=2cm,
∴AC:BD=1:.
故选:D.
6.解:连接AB交OC于点D,
∵四边形OACB是菱形,
∴AB⊥OC,AD=BD=1,OD=CD=3,
∴点B的坐标是(3,﹣1).
故选:B.
7.解:过点A作AE⊥BC于E,如图:,
∵在菱形ABCD中,AB=6,∠ABD=30°,
∴∠BAE=30°,
∵AE⊥BC,
∴AE=3,
∴菱形ABCD的面积是=18,
故选:B.
8.解:A、正确.对角线垂直的平行四边形的菱形.
B、正确.邻边相等的平行四边形是菱形.
C、错误.对角线相等的平行四边形是矩形,不一定是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.
故选:C.
9.解:连接BD,交AC于O点,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD=5,
∴AC⊥BD,AO=AC,BD=2BO,
∴∠AOB=90°,
∵AC=6,
∴AO=3,
∴B0==4,
∴DB=8,
∴菱形ABCD的面积是×AC?DB=×6×8=24,
∴BC?AE=24,
AE=,
故选:C.
二.填空题
10.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
∴AB=5,
∴AD=5,
∴由勾股定理知:OD===4,
∴点C的坐标是:(﹣5,4).
故答案为:(﹣5,4).
11.解:菱形ABCD的面积=AC?BD,
∵菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,
∴另一条对角线BD的长=8cm;
边长是:=5cm.
故答案为:5.
12.解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=BD=3,OC=AC=4,
在Rt△BOC中,由勾股定理得,BC==5,
∵S△OBC=×OB×OC=×BC×OF,
∴OF=,
∴EF=.
故答案为.
13.解:∵四边形ABCD是平行四边形,
∴当AB=BC时,平行四边形ABCD是菱形,
当AC⊥BD时,平行四边形ABCD是菱形.
故答案为:AB=BC或AC⊥BD等.
14.解:当AE⊥BC时,
∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
∴∠B=∠ACF=60°,
∵AD∥BC,
∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,
∠AFC=∠D+∠FAD=60°+∠FAD,
∴∠AEB=∠AFC,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(AAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∵当AE⊥BC时,AB=4,
∴AE=,
∴△AEF的面积最小值=,
故答案为:.
15.解:根据已知可得,
菱形的边长AB=BC=CD=AD=10cm,∠ABC=60°,∠BAD=120°,
∴△ABC为等边三角形,
∴AC=AB=10cm,AO=CO=5cm,
在Rt△AOB中,根据勾股定理得:BO==5,
∴BD=2BO=10(cm),
则S菱形ABCD=×AC×BD=×10×10
=50(cm2);
故答案为:10cm,50cm2.
16.解:∵E是AB的中点,
∴AE=1cm,
∵DE丄AB,
∴DE==cm.
∴菱形的面积为:2×=2cm2.
故答案为:2.
17.解:∵菱形的周长为8,
∴菱形的边长是:8×=2,
∵两个邻角的比是1:2,
∴较大的角是120°,较小的角是60°,
∴这个菱形的对角线AC所对的角是60°,
由菱形的性质得到,AC与菱形的两边构成的三角形是等边三角形,
∴AC=2,
BD=2××tan60°=2.
故答案为:2和2.
三.解答题
18.(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵BA=BC,
∴AD=BC,
∴四边形ABCD是平行四边形,
∵BA=BC,
∴四边形ABCD是菱形;
(2)解:∵DE⊥BD,
∴∠BDE=90°,
∴∠DBC+∠E=∠BDC+∠CDE=90°,
∵CB=CD,
∴∠DBC=∠BDC,
∴∠CDE=∠E,
∴CD=CE=BC,
∴BE=2BC=10,
∵BD=8,
∴DE==6,
∵四边形ABCD是菱形,
∴AD=AB=BC=5,
∴四边形ABED的周长=AD+AB+BE+DE=26.
19.证明:∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,∠EAD=∠ADF,
∴∠FAD=∠FDA
∴AF=DF,
∴四边形AEDF是菱形.
20.(1)证明:连接BD,交AC于O,如图所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
∵AE=CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,
∴四边形BEDF是菱形;
(2)解:∵∠DAB=60°,
∴∠DAE=30°,∠ADB=60°,
∵AD=6,
∴OD=AD=3,
∵AE=DE,
∴∠DAE=∠ADE,∠ADE=∠EDO=30°,
在Rt△DEO中,DE==2,
∴菱形BEDF的周长=4DE=8.
21.(1)证明:∵DE∥BC,DF∥AB
∴四边形DEBF是平行四边形
∵DE∥BC
∴∠EDB=∠DBF
∵BD平分∠ABC
∴∠ABD=∠DBF=∠ABC
∴∠ABD=∠EDB
∴DE=BE且四边形BEDF为平行四边形
∴四边形BEDF为菱形;
(2)解:∵∠A=100°,∠C=30°,
∴∠ABC=180°﹣100°﹣30°=50°,
∵四边形BEDF为菱形,
∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.
22.证明:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,∠EDA=∠FAD,
∵AD是△ABC的角平分线,∴∠EAD=∠FAD,
∴∠EAD=∠EDA,
∴EA=ED,
∴四边形AEDF为菱形.
23.证明:在菱形ABCD中,
AB=BC=CD=AD,
∠B=∠D,…(3分)
∵点E、F分别是BC、CD边的中点,
∴BE=BC,DF=CD,
∴BE=DF,
∴△ABE≌△ADF,…(7分)
∴AE=AF.…(9分)