名称 | 高中数学(人教版A版选修2-1)配套课时作业圆锥曲线(Word含答案) | | |
格式 | zip | ||
文件大小 | 1.4MB | ||
资源类型 | 教案 | ||
版本资源 | 人教新课标A版 | ||
科目 | 数学 | ||
更新时间 | 2020-12-17 15:50:38 |
所以直线AB的斜率存在,设为k, 此时(|MA|+|MF|)最小,即|AF|=5.
则直线AB的方程为y=k(x-),k≠0.
由消去x,
整理得ky2-2py-kp2=0.
由韦达定理得,y1+y2=,y1y2=-p2.
∴|AB|=
=
=
·
=2p(1+)=p.
解得k=±2.∴AB所在的直线方程为y=2(x-)或y=-2(x-).
22.解 (1)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-)、(0,)为焦点,长半轴为2的椭圆,它的短半轴b==1,
故曲线C的方程为x2+=1.
(2)设A(x1,y1),B(x2,y2),
联立方程
消去y并整理得(k2+4)x2+2kx-3=0.
其中Δ=4k2+12(k2+4)>0恒成立.
故x1+x2=-,x1x2=-.
若⊥,即x1x2+y1y2=0.
而y1y2=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=---+1=0,
化简得-4k2+1=0,所以k=±.www.ks5u.com
第二章 圆锥曲线与方程
§2.1 曲线与方程
课时目标
1.结合实例,了解曲线与方程的对应关系.
2.了解求曲线方程的步骤.
3.会求简单曲线的方程.
知识梳理
1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做______________;这条曲线叫做________________.
2.如果曲线C的方程是f(x,y)=0,点P的坐标是(x0,y0),则①点P在曲线C上?____________;②点P不在曲线C上?____________.
3.求曲线方程的一般步骤
(1)建立适当的坐标系,用有序实数对________表示曲线上任意一点M的坐标;
(2)写出适合条件p的点M的集合P=__________;
(3)用________表示条件p(M),列出方程f(x,y)=0;
(4)化方程f(x,y)=0为最简形式;
(5)说明以化简后的方程的解为坐标的点都在曲线上.
作业设计
一、选择题
1.方程x+|y-1|=0表示的曲线是( )
2.已知直线l的方程是f(x,y)=0,点M(x0,y0)不在l上,则方程f(x,y)-f(x0,y0)=0表示的曲线是( )
A.直线l
B.与l垂直的一条直线
C.与l平行的一条直线
D.与l平行的两条直线
3.下列各对方程中,表示相同曲线的一对方程是( )
A.y=与y2=x
B.y=x与=1
C.y2-x2=0与|y|=|x|
D.y=lg
x2与y=2lg
x
4.已知点A(-2,0),B(2,0),C(0,3),则△ABC底边AB的中线的方程是( )
A.x=0
B.x=0(0≤y≤3)
C.y=0
D.y=0(0≤x≤2)
5.在第四象限内,到原点的距离等于2的点的轨迹方程是( )
A.x2+y2=4
B.x2+y2=4
(x>0)
C.y=-
D.y=-
(0
A.曲线C的方程是F(x,y)=0
B.方程F(x,y)=0的曲线是C
C.坐标不满足方程F(x,y)=0的点都不在曲线C上
D.坐标满足方程F(x,y)=0的点都在曲线C上
二、填空题
7.若方程ax2+by=4的曲线经过点A(0,2)和B,则a=________,b=________.
8.到直线4x+3y-5=0的距离为1的点的轨迹方程为
______________________________.
9.已知点O(0,0),A(1,-2),动点P满足|PA|=3|PO|,则点P的轨迹方程是________________.
三、解答题
10.已知平面上两个定点A,B之间的距离为2a,点M到A,B两点的距离之比为2∶1,求动点M的轨迹方程.
11.动点M在曲线x2+y2=1上移动,M和定点B(3,0)连线的中点为P,求P点的轨迹方程.
能力提升
12.若直线y=x+b与曲线y=3-有公共点,则b的取值范围是( )
A.
B.
C.
D.
13.在平面直角坐标系中,已知动点P(x,y),,垂足为M,点N与点P关于x轴对称,且,求动点P的轨迹方程.
反思感悟
1.曲线C的方程是f(x,y)=0要具备两个条件:①曲线C上的点的坐标都是方程f(x,y)=0的解;②以方程f(x,y)=0的解为坐标的点都在曲线C上.
2.求曲线的方程时,要将所求点的坐标设成(x,y),所得方程会随坐标系的不同而不同.
3.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.
参考答案
知识梳理
1.(2)曲线的方程 方程的曲线
2.①f(x0,y0)=0 ②f(x0,y0)≠0
3.(1)(x,y) (2){M|p(M)} (3)坐标
作业设计
1.B [可以利用特殊值法来选出答案,如曲线过点(-1,0),(-1,2)两点.]
2.C [方程f(x,y)-f(x0,y0)=0表示过点M(x0,y0)且和直线l平行的一条直线.故选C.]
3.C [考虑x、y的范围.]
4.B [直接法求解,注意△ABC底边AB的中线是线段,而不是直线.]
5.D [注意所求轨迹在第四象限内.]
6.C [直接法:
原说法写成命题形式即“若点M(x,y)是曲线C上的点,则M点的坐标适合方程F(x,y)=0”,其逆否命题是“若M点的坐标不适合方程F(x,y)=0,则M点不在曲线C上”,此即说法C.
特值方法:作如图所示的曲线C,考查C与方程F(x,y)=x2-1=0的关系,显然A、B、D中的说法都不正确.
7.16-8 2
8.4x+3y-10=0和4x+3y=0
解析 设动点坐标为(x,y),则=1,
即|4x+3y-5|=5.
∴所求轨迹方程为4x+3y-10=0和4x+3y=0.
9.8x2+8y2+2x-4y-5=0
10.解
以两个定点A,B所在的直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系(如图所示).
由于|AB|=2a,
则设A(-a,0),B(a,0),
动点M(x,y).
因为|MA|∶|MB|=2∶1,
所以∶=2∶1,
即=2,
化简得2+y2=a2.
所以所求动点M的轨迹方程为
2+y2=a2.
11.解 设P(x,y),M(x0,y0),∵P为MB的中点,
∴,即,
又∵M在曲线x2+y2=1上,∴(2x-3)2+4y2=1.
∴点P的轨迹方程为(2x-3)2+4y2=1.
12.C [曲线方程可化简为(x-2)2+(y-3)2=4
(1≤y≤3),即表示圆心为(2,3),半径为2的半圆,依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b的距离等于2,解得b=1+2或b=1-2,因为是下半圆故可得b=1-2,当直线过(0,3)时,解得b=3,故1-2≤b≤3,所以C正确.
13.解由已知得M(0,y),N(x,-y)则,
即所求动点P的轨迹方程为:.www.ks5u.com
2.2.2 椭圆的简单几何性质
课时目标
1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.
2.明确标准方程中a,b以及c,e的几何意义,a、b、c、e之间的相互关系.
3.能利用椭圆的几何性质解决椭圆的简单问题.
知识梳理
1.椭圆的简单几何性质
焦点的
位置
焦点在x轴上
焦点在y轴上
图形
标准
方程
范围
顶点
轴长
短轴长=____,长轴长=____
焦点
焦距
对称性
对称轴是______,对称中心是______
离心率
2.直线与椭圆
直线y=kx+b与椭圆+=1
(a>b>0)的位置关系:
直线与椭圆相切?有______组实数解,即Δ______0.直线与椭圆相交?有______组实数解,即Δ______0,直线与椭圆相离?________实数解,即Δ______0.
设计作业
一、选择题
1.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是( )
A.5,3,
B.10,6,
C.5,3,
D.10,6,
2.焦点在x轴上,长、短半轴长之和为10,焦距为4,则椭圆的方程为( )
A.+=1
B.+=1
C.+=1
D.+=1
3.若焦点在x轴上的椭圆+=1的离心率为,则m等于( )
A.
B.
C.
D.
4.如图所示,A、B、C分别
为椭圆+=1
(a>b>0)的顶点与焦点,若∠ABC=90°,则该椭圆的离心率为( )
A.
B.1-
C.-1
D.
5.若直线mx+ny=4与圆O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数为( )
A.至多一个
B.2
C.1
D.0
6.已知F1、F2是椭圆的两个焦点满足的点M总在椭圆内部,则椭圆离心率的取值范围是(
)
A.(0,1)
B.
C.
D.
二、填空题
7.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.
8.直线x+2y-2=0经过椭圆+=1
(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.
9.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为____________.
三、解答题
10.
如图,已知P是椭圆+=1
(a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆中心,B是椭圆的上顶点,H是直线x=-
(c是椭圆的半焦距)与x轴的交点,若PF⊥OF,HB∥OP,试求椭圆的离心率e.
11.已知椭圆4x2+y2=1及直线y=x+m.
(1)当直线和椭圆有公共点时,求实数m的取值范围;
(2)求被椭圆截得的最长弦所在的直线方程.
能力提升
12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A.
B.
C.
D.
13.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F1(-,0),且右顶点为D(2,0).设点A的坐标是.
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
反思感悟
1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.
2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.
3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.
4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.
参考答案
2.2.2 椭圆的简单几何性质
知识梳理
1.
焦点的
位置
焦点在x轴上
焦点在y轴上
图形
标准
方程
+=1
+=1
范围
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
顶点
(±a,0),(0,±b)
(±b,0),(0,±a)
轴长
短轴长=2b,长轴长=2a
焦点
(±c,0)
(0,±c)
焦距
2c=2
对称性
对称轴是坐标轴,对称中心是原点
离心率
e=,0
作业设计
1.B [先将椭圆方程化为标准形式:+=1,
其中b=3,a=5,c=4.]
2.A 3.B
4.A [由(a+c)2=a2+2b2+c2,
∵b2=a2-c2,∴c2+ac-a2=0,
∵e=,∴e2+e-1=0,∴e=.]
5.B [∵>2,∴<4.
∴点P(m,n)在椭圆+=1的内部,
∴过点P(m,n)的直线与椭圆+=1有两个交点.]
6.
C
∴M点轨迹方程为x2+y2=c2,其中F1F2为直径,
由题意知椭圆上的点在圆x2+y2=c2外部,
设点P为椭圆上任意一点,则|OP|>c恒成立,
由椭圆性质知|OP|≥b,其中b为椭圆短半轴长,
∴b>c,∴c2
∴2<,∴e=<.又∵0
解析 设椭圆的方程为+=1
(a>b>0),
将点(-5,4)代入得+=1,
又离心率e==,即e2===,
解之得a2=45,b2=36,故椭圆的方程为+=1.
8.
解析 由题意知椭圆的焦点在x轴上,又直线x+2y-2=0与x轴、y轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b=1,c=2,从而a=,e==.
9.x+2y-4=0
解析 设弦的两个端点为M(x1,y1),N(x2,y2),
则,
两式相减,得+=0.
又x1+x2=4,y1+y2=2,kMN=,
∴kMN=-,由点斜式可得弦所在直线的方程为
y=-(x-2)+1,即x+2y-4=0.
10.解 依题意知H,F(c,0),B(0,b).
设P(xP,yP),且xP=c,代入到椭圆的方程,
得yP=.∴P.
∵HB∥OP,∴kHB=kOP,即=.∴ab=c2.
∴e==,∴e2==e-2-1.
∴e4+e2-1=0.∵0
因为直线与椭圆有公共点,
所以Δ=4m2-20(m2-1)≥0.
解得-≤m≤.
(2)设直线与椭圆交于A(x1,y1)、B(x2,y2),
由(1)知,5x2+2mx+m2-1=0,
由根与系数的关系得x1+x2=-,
x1x2=(m2-1).
设弦长为d,且y1-y2=(x1+m)-(x2+m)=x1-x2,
∴d==
=
=
=.
∴当m=0时,d最大,此时直线方程为y=x.
12.B [由题意知2b=a+c,又b2=a2-c2,
∴4(a2-c2)=a2+c2+2ac.
∴3a2-2ac-5c2=0.∴5c2+2ac-3a2=0.
∴5e2+2e-3=0.∴e=或e=-1(舍去).]
13.解 (1)∵a=2,c=,∴b==1.
∴椭圆的标准方程为+y2=1.
(2)设P(x0,y0),M(x,y),由中点坐标公式,
得 ∴
又∵+y=1,∴+2=1
即为中点M的轨迹方程.www.ks5u.com
§ 2.4抛物线
2.4.1 抛物线及其标准方程
课时目标 1.掌握抛物线的定义、四种不同标准形式的抛物线方程、准线、焦点坐标及对应的几何图形.2.会利用定义求抛物线方程.
知识梳理
1.抛物线的定义
平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线,点F叫做抛物线的________,直线l叫做抛物线的________.
2.抛物线的标准方程
(1)方程y2=±2px,x2=±2py(p>0)叫做抛物线的________方程.
(2)抛物线y2=2px(p>0)的焦点坐标是________,准线方程是__________,开口方向_______.
(3)抛物线y2=-2px(p>0)的焦点坐标是____________,准线方程是__________,开口方向________.
(4)抛物线x2=2py(p>0)的焦点坐标是________,准线方程是__________,开口方向________.
(5)抛物线x2=-2py(p>0)的焦点坐标是______,准线方程是________,开口方向________.
作业设计
一、选择题
1.抛物线y2=ax(a≠0)的焦点到其准线的距离是( )
A.
B.
C.|a|
D.-
2.已知抛物线的顶点在原点,对称轴为x轴,焦点在双曲线-=1上,则抛物线方程为( )
A.y2=8x
B.y2=4x
C.y2=2x
D.y2=±8x
3.抛物线y2=2px(p>0)上一点M到焦点的距离是a(a>),则点M的横坐标是( )
A.a+
B.a-
C.a+p
D.a-p
4.过点M(2,4)作与抛物线y2=8x只有一个公共点的直线l有( )
A.0条
B.1条
C.2条
D.3条
5.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )
A.x=1
B.x=-1
C.x=2
D.x=-2
6.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比等于( )
A.
B.
C.
D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.抛物线x2+12y=0的准线方程是__________.
8.若动点P在y=2x2+1上,则点P与点Q(0,-1)连线中点的轨迹方程是__________.
9.已知抛物线x2=y+1上一定点A(-1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是______________.
三、解答题
10.已知抛物线的顶点在原点,对称轴为x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值,并写出抛物线的焦点坐标和准线方程.
11.求焦点在x轴上且截直线2x-y+1=0所得弦长为的抛物线的标准方程.
能力提升
12.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为( )
A.
B.1
C.2
D.4
13.已知抛物线y2=2px
(p>0)上的一点M到定点A和焦点F的距离之和的最小值等于5,求抛物线的方程.
反思感悟
1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.
2.焦点在y轴上的抛物线的标准方程x2=2py通常又可以写成y=ax2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax2来求其焦点和准线时,必须先化成标准形式.
§2.4 抛物线
2.4.1 抛物线及其标准方程
知识梳理
1.相等 焦点 准线
2.(1)标准 (2)(,0) x=- 向右
(3)(-,0) x= 向左 (4)(0,) y=- 向上 (5)(0,-) y= 向下
作业设计
1.B [因为y2=ax,所以p=,即该抛物线的焦点到其准线的距离为,故选B.]
2.D [由题意知抛物线的焦点为双曲线-=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y2=8x或y2=-8x.]
3.B [由抛物线的定义知:点M到焦点的距离a等于点M到抛物线的准线x=-的距离,所以点M的横坐标即点M到y轴的距离为a-.]
4.C [容易发现点M(2,4)在抛物线y2=8x上,这样l过M点且与x轴平行时,或者l在M点处与抛物线相切时,l与抛物线有一个公共点,故选C.]
5.B [∵y2=2px的焦点坐标为(,0),
∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.]
6.A [如图所示,设过点M(,0)的直线方程为y=k(x-),代入y2=2x并整理,
得k2x2-(2k2+2)x+3k2=0,
则x1+x2=.
因为|BF|=2,所以|BB′|=2.
不妨设x2=2-=是方程的一个根,
可得k2=,
所以x1=2.
=====.]
7.y=3
解析 抛物线x2+12y=0,即x2=-12y,故其准线方程是y=3.
8.y=4x2
9.(-∞,-3]∪[1,+∞)
解析 由题意知,设P(x1,x-1),Q(x2,x-1),
即(-1-x1,1-x)·(x2-x1,x-x)=0,
也就是(-1-x1)·(x2-x1)+(1-x)·(x-x)=0.
∵x1≠x2,且x1≠-1,
∴上式化简得x2=-x1=+(1-x1)-1,
由基本不等式可得x2≥1或x2≤-3.
10.解 设抛物线方程为y2=-2px
(p>0),
则焦点F,由题意,得
解得或
故所求的抛物线方程为y2=-8x,m=±2.
抛物线的焦点坐标为(-2,0),准线方程为x=2.
11.解 设所求抛物线方程为y2=ax
(a≠0).①
直线方程变形为y=2x+1,②
设抛物线截直线所得弦为AB.
②代入①,整理得4x2+(4-a)x+1=0,
则|AB|=
=.
解得a=12或a=-4.
∴所求抛物线方程为y2=12x或y2=-4x.
12.C [本题考查抛物线的相关几何性质及直线与圆的位置关系.
方法一 由抛物线的标准方程得准线方程为x=-.
∵准线与圆相切,圆的方程为(x-3)2+y2=16,
∴3+=4,∴p=2.
方法二 作图可知,抛物线y2=2px
(p>0)的准线与圆(x-3)2+y2=16相切于点(-1,0),
所以-=-1,p=2.]
13.解
(1)当点A在抛物线内部时,如图,42<2p·,即p>时,|MF|+|MA|=|MA′|+|MA|.
当A,M,A′共线时,
(|MF|+|MA|)min=5,故+=5,∴p=3满足p>,
∴抛物线方程为y2=6x.
(2)当点A在抛物线外部或在抛物线上时42≥2p·,即0
即
=5,∴p=1或p=13(舍).
∴抛物线方程为y2=2x.
综上抛物线方程为y2=6x或y2=2x.www.ks5u.com
2.4.2 抛物线的简单几何性质
课时目标
1.了解抛物线的几何图形,知道抛物线的简单几何性质,学会利用抛物线方程研究抛物线的几何性质的方法.
2.了解抛物线的简单应用.
知识梳理
1.抛物线的简单几何性质
设抛物线的标准方程为y2=2px(p>0)
(1)范围:抛物线上的点(x,y)的横坐标x的取值范围是________,抛物线在y轴的______侧,当x的值增大时,|y|也________,抛物线向右上方和右下方无限延伸.
(2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________.
(3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________.
(4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e表示,其值为______.
(5)抛物线的焦点到其准线的距离为______,这就是p的几何意义,顶点到准线的距离为,焦点到顶点的距离为________.
2.直线与抛物线的位置关系
直线y=kx+b与抛物线y2=2px(p>0)的交点个数决定于关于x的方程________________________的解的个数.当k≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ<0时,直线与抛物线________公共点.当k=0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点.
3.抛物线的焦点弦
设抛物线y2=2px(p>0),AB为过焦点的一条弦,A(x1,y1),B(x2,y2),AB的中点M(x0,y0),则有以下结论.
(1)以AB为直径的圆与准线________.
(2)|AB|=________(焦点弦长与中点坐标的关系).
(3)|AB|=x1+x2+______.
(4)A、B两点的横坐标之积、纵坐标之积为定值,即x1x2=________,y1y2=________.
作业设计
一、选择题
1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( )
A.x2=-y或y2=x
B.y2=-x或x2=y
C.y2=-x
D.x2=y
2.若抛物线y2=2px
(p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F的距离的关系是( )
A.成等差数列
B.既成等差数列又成等比数列
C.成等比数列
D.既不成等比数列也不成等差数列
3.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )
A.
B.3
C.
D.
4.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
A.y2=±4x
B.y2=±8x
C.y2=4x
D.y2=8x
5.设直线l1:y=2x,直线l2经过点P(2,1),抛物线C:y2=4x,已知l1、l2与C共有三个交点,则满足条件的直线l2的条数为( )
A.1
B.2
C.3
D.4
6.过抛物线y2=ax
(a>0)的焦点F作一直线交抛物线于P、Q两点,若PF与FQ的长分别为p、q,则+等于( )
A.2a
B.
C.4a
D.
题 号
1
2
3
4
5
6
答 案
二、填空题
7.已知抛物线C的顶点为坐标原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为________.
8.已知F是抛物线C:y2=4x的焦点,A、B是抛物线C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于________.
9.过抛物线x2=2py
(p>0)的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(点A在y轴的左侧),则=________.
三、解答题
10.设抛物线y=mx2
(m≠0)的准线与直线y=1的距离为3,求抛物线的标准方程.
11.过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q所平分,求AB所在的直线方程.
能力提升
12.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-,那么|PF|等于( )
A.4
B.8
C.8
D.16
13.
已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)求线段AB的长的最小值.
反思感悟
1.抛物线上一点与焦点的距离问题,可转化为该点到准线的距离.
2.直线与抛物线的位置关系,可利用直线方程与抛物线方程联立而成的方程组的解来判定;“中点弦”问题也可使用“点差法”.
2.4.2 抛物线的简单几何性质
知识梳理
1.(1)x≥0 右 增大 (2)x轴 抛物线的轴 (3)顶点 坐标原点 (4)离心率 1 (5)p
2.k2x2+2(kb-p)x+b2=0 两 一 没有 平行或重合 一
3.(1)相切 (2)2(x0+) (3)p (4) -p2
作业设计
1.B [由题意知所求抛物线开口向上或开口向左,利用待定系数法可求得方程.]
2.A [设三点为P1(x1,y1),P2(x2,y2),P3(x3,y3),
则y=2px1,y=2px2,y=2px3,
因为2y=y+y,所以x1+x3=2x2,
即|P1F|-+|P3F|-=2,
所以|P1F|+|P3F|=2|P2F|.]
3.A [
如图所示,由抛物线的定义知,点P到准线x=-的距离d等于点P到焦点的距离|PF|.因此点P到点(0,2)的距离与点P到准线的距离之和可转化为点P到点(0,2)的距离与点P到点F的距离之和,其最小值为点M(0,2)到点F的距离,则距离之和的最小值为
=.]
4.B [y2=ax的焦点坐标为,过焦点且斜率为2的直线方程为y=2,令x
=0得y=-.
∴××=4,∴a2=64,∴a=±8.]
5.C [∵点P(2,1)在抛物线内部,且直线l1与抛物线C相交于A,B两点,∴过点P的直线l2在过点A或点B或与x轴平行时符合题意.∴满足条件的直线l2共有3条.]
6.D [可采用特殊值法,设PQ过焦点F且垂直于x轴,则|PF|=p=xP+=+=,
|QF|=q=,∴+=+=.]
7.y2=4x
解析 设抛物线方程为y2=ax.将y=x代入y2=ax,
得x=0或x=a,∴=2.∴a=4.
∴抛物线方程为y2=4x.
8.2
解析 设A(x1,y1),B(x2,y2),则y=4x1,y=4x2.
∴(y1+y2)(y1-y2)=4(x1-x2).
∵x1≠x2,∴==1.
∴直线AB的方程为y-2=x-2,即y=x.
将其代入y2=4x,得A(0,0)、B(4,4).
∴|AB|=4.又F(1,0)到y=x的距离为,
∴S△ABF=××4=2.
9.
解析 抛物线x2=2py
(p>0)的焦点为F,则直线AB的方程为y=x+,
由消去x,得12y2-20py+3p2=0,
解得y1=,y2=.
由题意可设A(x1,y1),B(x2,y2),由抛物线的定义,
可知===.
10.解 由y=mx2
(m≠0)可化为x2=y,
其准线方程为y=-.
由题意知-=-2或-=4,
解得m=或m=-.
则所求抛物线的标准方程为x2=8y或x2=-16y.
11.解 方法一 设以Q为中点的弦AB端点坐标为
A(x1,y1)、B(x2,y2),
则有y=8x1,①
y=8x2,②
∵Q(4,1)是AB的中点,
∴x1+x2=8,y1+y2=2.③
①-②,得(y1+y2)(y1-y2)=8(x1-x2).④
将③代入④得y1-y2=4(x1-x2),
即4=,∴k=4.
∴所求弦AB所在的直线方程为y-1=4(x-4),即4x-y-15=0.
方法二 设弦AB所在直线方程为y=k(x-4)+1.
由消去x,
得ky2-8y-32k+8=0,
此方程的两根就是线段端点A、B两点的纵坐标,由根与系数的关系和中点坐标公式,
得y1+y2=,又y1+y2=2,∴k=4.
∴所求弦AB所在的直线方程为4x-y-15=0.
12.
B [如图所示,直线AF的方程为y=-(x-2),与准线方程x=-2联立得A(-2,4).
设P(x0,4),代入抛物线y2=8x,得8x0=48,∴x0=6,
∴|PF|=x0+2=8,选B.]
13.解 由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).
设A(x1,y1),B(x2,y2).
分别过A、B作准线的垂线,垂足为A′、B′.
(1)由抛物线的定义可知,|AF|=x1+,
从而x1=4-1=3.
代入y2=4x,解得y1=±2.
∴点A的坐标为
(3,2)或(3,-2).
(2)当直线l的斜率存在时,
设直线l的方程为y=k(x-1).
与抛物线方程联立,
消去y,整理得k2x2-(2k2+4)x+k2=0,
因为直线与抛物线相交于A、B两点,
则k≠0,并设其两根为x1,x2,则x1+x2=2+.
由抛物线的定义可知,
|AB|=x1+x2+p=4+>4.
当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,
所以,|AB|≥4,即线段AB的长的最小值为4.www.ks5u.com
§ 2.3双曲线
2.3.1 双曲线及其标准方程
课时目标
1.了解双曲线的定义、几何图形和标准方程的推导过程.
2.掌握双曲线的标准方程.
3.会利用双曲线的定义和标准方程解决简单的应用问题.
知识梳理
1.双曲线的有关概念
(1)双曲线的定义
平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.
平面内与两个定点F1,F2的距离的差的绝对值等于|F1F2|时的点的轨迹为________________________________________________________________________.
平面内与两个定点F1,F2的距离的差的绝对值大于|F1F2|时的点的轨迹__________.
(2)双曲线的焦点和焦距
双曲线定义中的两个定点F1、F2叫做__________________,两焦点间的距离叫做__________________.
2.双曲线的标准方程
(1)焦点在x轴上的双曲线的标准方程是______________________,焦点F1__________,F2__________.
(2)焦点在y轴上的双曲线的标准方程是________________,焦点F1__________,F2__________.
(3)双曲线中a、b、c的关系是________________.
作业设计
一、选择题
1.已知平面上定点F1、F2及动点M,命题甲:||MF1|-|MF2||=2a(a为常数),命题乙:M点轨迹是以F1、F2为焦点的双曲线,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.若ax2+by2=b(ab<0),则这个曲线是( )
A.双曲线,焦点在x轴上
B.双曲线,焦点在y轴上
C.椭圆,焦点在x轴上
D.椭圆,焦点在y轴上
3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )
A.x2-=1
B.-y2=1
C.y2-=1
D.-=1
4.双曲线-=1的一个焦点为(2,0),则m的值为( )
A.
B.1或3
C.
D.
5.一动圆与两圆:x2+y2=1和x2+y2-8x+12=0都外切,则动圆圆心的轨迹为( )
A.抛物线
B.圆
C.双曲线的一支
D.椭圆
6.已知双曲线中心在坐标原点且一个焦点为F1(-,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是( )
A.-y2=1
B.x2-=1
C.-=1
D.-=1
二、填空题
7.设F1、F2是双曲线的两个焦点,点P在双曲线上,且|PF1·PF2|=0,则|PF1|·|PF2|=
8.已知方程-=1表示双曲线,则k的取值范围是________.
9.F1、F2是双曲线-=1的两个焦点,P在双曲线上且满足|PF1|·|PF2|=32,则∠F1PF2=__________________
.
三、解答题
10.设双曲线与椭圆+=1有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程.
11.在△ABC中,B(4,0)、C(-4,0),动点A满足sin
B-sin
C=sin
A,求动点A的轨迹方程.
能力提升
12.若点O和点F(-2,0)分别为双曲线(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为(
)
A.[3-2,+∞)
B.[3+2,+∞)
C.[-,+∞)
D.[,+∞)
13.已知双曲线的一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,求双曲线的标准方程.
反思感悟
1.双曲线的标准方程可以通过待定系数法求得.
2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.
3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.
参考答案
§2.3 双曲线
2.3.1 双曲线及其标准方程
知识梳理
1.(1)|F1F2| 以F1,F2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距
2.(1)-=1(a>0,b>0) (-c,0) (c,0)
(2)-=1(a>0,b>0) (0,-c) (0,c)
(3)c2=a2+b2
作业设计
1.B [根据双曲线的定义,乙?甲,但甲乙,
只有当2a<|F1F2|且a≠0时,其轨迹才是双曲线.]
2.B [原方程可化为+y2=1,因为ab<0,所以<0,所以曲线是焦点在y轴上的双曲线,故选B.]
3.A [∵双曲线的焦点在x轴上,
∴设双曲线方程为-=1
(a>0,b>0).
由题知c=2,∴a2+b2=4.①
又点(2,3)在双曲线上,∴-=1.②
由①②解得a2=1,b2=3,
∴所求双曲线的标准方程为x2-=1.]
4.A [∵双曲线的焦点为(2,0),在x轴上且c=2,
∴m+3+m=c2=4.∴m=.]
5.C [由题意两定圆的圆心坐标为O1(0,0),O2(4,0),设动圆圆心为O,动圆半径为r,则|OO1|=r+1,|OO2|=r+2,
∴|OO2|-|OO1|=1<|O1O2|=4,故动圆圆心的轨迹为双曲线的一支.]
6.B [设双曲线方程为-=1,因为c=,c2=a2+b2,所以b2=5-a2,所以-=1.由于线段PF1的中点坐标为(0,2),则P点的坐标为(,4).代入双曲线方程得-=1,解得a2=1或a2=25(舍去),所以双曲线方程为x2-=1.故选B.]
7.2
解析 ∵||PF1|-|PF2||=4,又PF1⊥PF2,|F1F2|=2,
∴|PF1|2+|PF2|2=20,∴(|PF1|-|PF2|)2
=20-2|PF1||PF2|=16,∴|PF1|·|PF2|=2.
8.-1
所以(1+k)(1-k)>0.所以(k+1)(k-1)<0.
所以-1
解析 设∠F1PF2=α,|PF1|=r1,|PF2|=r2.
在△F1PF2中,由余弦定理,
得(2c)2=r+r-2r1r2cos
α,
∴cos
α===0.
∴α=90°.
10.解 方法一 设双曲线的标准方程为-=1
(a>0,b>0),由题意知c2=36-27=9,c=3.
又点A的纵坐标为4,则横坐标为±,于是有
解得
所以双曲线的标准方程为-=1.
方法二 将点A的纵坐标代入椭圆方程得A(±,4),
又两焦点分别为F1(0,3),F2(0,-3).
所以2a=|-
|=4,
即a=2,b2=c2-a2=9-4=5,
所以双曲线的标准方程为-=1.
11.解 设A点的坐标为(x,y),在△ABC中,由正弦定理,
得===2R,代入sin
B-sin
C=sin
A,
得-=·,又|BC|=8,
所以|AC|-|AB|=4.
因此A点的轨迹是以B、C为焦点的双曲线的右支(除去右顶点)且2a=4,2c=8,所以a=2,c=4,b2=12.
所以A点的轨迹方程为-=1
(x>2).
12.B
[由c=2得a2+1=4,
∴a2=3,
∴双曲线方程为-y2=1.
设P(x,y)(x≥),
(x≥5),令g(x),
g(x)在[,+
)上单调递增.g(x)max=g()=3+2
.OP·FP的取值范图为[3+2,+).
13.解 设双曲线的标准方程为-=1,
且c=,则a2+b2=7.①
由MN中点的横坐标为-知,
中点坐标为.
设M(x1,y1),N(x2,y2),则由
得b2(x1+x2)(x1-x2)-a2(y1+y2)(y1-y2)=0.
∵,且=1,
∴2b2=5a2.②
由①,②求得a2=2,b2=5.
∴所求双曲线的标准方程为-=1.www.ks5u.com
§2.2 椭圆
2.2.1 椭圆及其标准方程
课时目标
了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程。
.2.掌握椭圆的定义、标准方程及几何图形。
知识梳理
1.椭圆的概念:平面内与两个定点F1,F2的距离的和等于________(大于|F1F2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF1|+|PF2|=|F1F2|时,轨迹是______________,当|PF1|+|PF2|<|F1F2|时__________轨迹.
2.椭圆的方程:焦点在x轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为____________;焦点在y轴上的椭圆的标准方程为________________.
作业设计
一、选择题
1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )
A.椭圆
B.直线
C.圆
D.线段
2.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为( )
A.32
B.16
C.8
D.4
3.椭圆2x2+3y2=1的焦点坐标是( )
A.
B.(0,±1)
C.(±1,0)
D.
4.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是( )
A.(-3,-1)
B.(-3,-2)
C.(1,+∞)
D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点,则该椭圆的方程是( )
A.+=1
B.+=1
C.+=1
D.+=1
6.设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是( )
A.钝角三角形
B.锐角三角形
C.斜三角形
D.直角三角形
二、填空题
7.椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.
8.P是椭圆+=1上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是______,最小值是______.
9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n千米,远地点距地面m千米,地球半径为R,那么这个椭圆的焦距为________千米.
三、解答题
10.根据下列条件,求椭圆的标准方程.
(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;
(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点.
11.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.
能力提升
13.
如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程.
反思感悟
1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是线段F1F2,如果2a<|F1F2|,则不存在轨迹.
2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.
3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1
(m,n为不相等的正数).
参考答案
2.2.1 椭圆及其标准方程
知识梳理
1.常数 椭圆 焦点 焦距 线段F1F2 不存在
2.+=1
(a>b>0) F1(-c,0),F2(c,0) 2c +=1
(a>b>0)
作业设计
1.D [∵|MF1|+|MF2|=6=|F1F2|,
∴动点M的轨迹是线段.]
2.B [由椭圆方程知2a=8,
由椭圆的定义知|AF1|+|AF2|=2a=8,
|BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]
3.D
4.B [|a|-1>a+3>0.]
5.D [椭圆的焦点在x轴上,排除A、B,又过点验证即可.]
6.D [由椭圆的定义,知|PF1|+|PF2|=2a=8.
由题可得||PF1|-|PF2||=2,则|PF1|=5或3,|PF2|=3或5.
又|F1F2|=2c=4,∴△PF1F2为直角三角形.]
7.2 120°
解析
∵|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=2.
在△F1PF2中,
cos∠F1PF2=
==-,∴∠F1PF2=120°.
8.4 3
解析 设|PF1|=x,则k=x(2a-x),
因a-c≤|PF1|≤a+c,即1≤x≤3.
∴k=-x2+2ax=-x2+4x=-(x-2)2+4,
∴
9.m-n
解析 设a,c分别是椭圆的长半轴长和半焦距,
则,则2c=m-n.
10.解 (1)∵椭圆的焦点在x轴上,
∴设椭圆的标准方程为+=1
(a>b>0).
∵2a=10,∴a=5,又∵c=4.
∴b2=a2-c2=52-42=9.
故所求椭圆的标准方程为+=1.
(2)∵椭圆的焦点在y轴上,
∴设椭圆的标准方程为+=1
(a>b>0).
由椭圆的定义知,2a=
+
=+=2,
∴a=.
又∵c=2,∴b2=a2-c2=10-4=6.
故所求椭圆的标准方程为+=1.
11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,
∴|PO1|+|PA|=4,又∵|O1A|=2<4,
∴点P的轨迹是以A、O1为焦点的椭圆,
∴c=,a=2,b=1,
∴动点P的轨迹方程为x2+=1.
12.C[由椭圆方程得F(-1,0),设P
,则
∵P为椭圆上一点∴,
∴
.的最大值在=2时取得,且最大值等于6.
13.解 以BC边所在直线为x轴,BC边中点为原点,建立如图所示坐标系,
则B(6,0),C(-6,0),CE、BD为AB、AC边上的中线,
则|BD|+|CE|=30.
由重心性质可知
|GB|+|GC|=(|BD|+|CE|)=20.
∵B、C是两个定点,G点到B、C距离和等于定值20,且20>12,
∴G点的轨迹是椭圆,B、C是椭圆焦点.
∴2c=|BC|=12,c=6,2a=20,a=10,
b2=a2-c2=102-62=64,
故G点的轨迹方程为+=1,
去掉(10,0)、(-10,0)两点.
又设G(x′,y′),A(x,y),则有+=1.
由重心坐标公式知
故A点轨迹方程为+=1.
即+=1,去掉(-30,0)、(30,0)两点.www.ks5u.com
章末总结
知识再现
重点解读
知识点一 圆锥曲线的定义和性质
对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.
例1 已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=12,求双曲线的标准方程.
知识点二 直线与圆锥曲线的位置关系
直线与圆锥曲线一般有三种位置关系:相交、相切、相离.
在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.
例2 如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OM⊥ON.
知识点三 轨迹问题
轨迹是解析几何的基本问题,求解的方法有以下几种:
(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.
(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.
(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.
(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.
例3 设点A、B是抛物线y2=4px
(p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?
知识点四 圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.
例4 若直线l:y=kx+m与椭圆+=1相交于A、B两点(A、B不是左、右顶点),A2为椭圆的右顶点且AA2⊥BA2,求证:直线l过定点.
知识点五 圆锥曲线中的最值、范围问题
圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略:
(1)平面几何法
平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.
(2)目标函数法
建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.
例5 已知A(4,0),B(2,2)是椭圆+=1内的两定点,点M是椭圆上的动点,求|MA|+|MB|的最值.
例6 已知F1、F2为椭圆x2+=1的上、下两个焦点,AB是过焦点F1的一条动弦,求△ABF2面积的最大值.
章末总结
重点解读
例1 解
如图所示,设双曲线方程为-=1
(a>0,b>0).
∵e==2,∴c=2a.
由双曲线的定义,得||PF1|-|PF2||=2a=c,
在△PF1F2中,由余弦定理,得:
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos
60°
=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos
60°),
即4c2=c2+|PF1||PF2|.①
又S△PF1F2=12,
∴|PF1||PF2|sin
60°=12,
即|PF1||PF2|=48.②
由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,
∴所求的双曲线方程为-=1.
例2 (1)解 过点P(2,0)且斜率为k的直线方程为:y=k(x-2).
把y=k(x-2)代入y2=2x,
消去y得k2x2-(4k2+2)x+4k2=0,
由于直线与抛物线交于不同两点,
故k2≠0且Δ=(4k2+2)2-16k4=16k2+4>0,
x1x2=4,x1+x2=4+,
∵M、N两点在抛物线上,∴y·y=4x1·x2=16,
而y1·y2<0,∴y1y2=-4.
(2)证明∴,,
例3 解 设直线OA的方程为y=kx
(k≠±1,因为当k=±1时,直线AB的斜率不存在),则直线OB的方程为y=-,进而可求A、
B(4pk2,-4pk).
于是直线AB的斜率为kAB=,
从而kOM=,
∴直线OM的方程为y=x,①
直线AB的方程为y+4pk=(x-4pk2).②
将①②相乘,得y2+4pky=-x(x-4pk2),
即x2+y2=-4pky+4pk2x=4p(k2x-ky),③
又k2x-ky=x,代入③式并化简,
得(x-2p)2+y2=4p2.
当k=±1时,易求得直线AB的方程为x=4p.
故此时点M的坐标为(4p,0),也在(x-2p)2+y2=4p2
(x≠0)上.
∴点M的轨迹方程为(x-2p)2+y2=4p2
(x≠0),
∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.
例4
证明 设A(x1,y1),
B(x2,y2),
联立
得(3+4k2)x2+8mkx+4(m2-3)=0,
则
即
又y1y2=(kx1+m)(kx2+m)
=k2x1x2+mk(x1+x2)+m2
=.
∵椭圆的右顶点为A2(2,0),AA2⊥BA2,
∴(x1-2)(x2-2)+y1y2=0.
∴y1y2+x1x2-2(x1+x2)+4=0.
∴+++4=0.
∴7m2+16km+4k2=0,
解得m1=-2k,m2=-,
且均满足3+4k2-m2>0.
当m1=-2k时,l的方程为y=k(x-2),
直线过定点(2,0),与已知矛盾.
当m2=-时,l的方程为y=k,直线过定点,
∴直线l过定点.
例5 解 因为A(4,0)是椭圆的右焦点,设A′为椭圆的左
焦点,则A′(-4,0),由椭圆定义知|MA|+|MA′|=10.
如图所示,则|MA|+|MB|=|MA|+|MA′|+|MB|-|MA′|
=10+|MB|-|MA′|≤10+|A′B|.
当点M在BA′的延长线上时取等号.
所以当M为射线BA′与椭圆的交点时,
(|MA|+|MB|)max=10+|A′B|=10+2.
又如图所示,|MA|+|MB|=|MA|+|MA′|-|MA′|+|MB|
=10-(|MA′|-|MB|)
≥10-|A′B|,
当M在A′B的延长线上时取等号.
所以当M为射线A′B与椭圆的交点时,
(|MA|+|MB|)min=10-|A′B|=10-2.
例6 解 由题意,|F1F2|=2.
设直线AB方程为y=kx+1,
代入椭圆方程2x2+y2=2,
得(k2+2)x2+2kx-1=0,
则xA+xB=-,xA·xB=-,
∴|xA-xB|=.
S△ABF2=|F1F2|·|xA-xB|=2×
=2×≤2×=.
当=,即k=0时,
S△ABF2有最大面积为.www.ks5u.com
2.3.2 双曲线的简单几何性质
课时目标 1.掌握双曲线的简单几何性质.
2.了解双曲线的渐近性及渐近线的概念.
3.掌握直线与双曲线的位置关系.
知识梳理
1.双曲线的几何性质
标准方程
-=1
(a>0,b>0)
-=1
(a>0,b>0)
图形
性质
焦点
焦距
范围
对称性
顶点
轴长
实轴长=____,虚轴长=____
离心率
渐近线
2.直线与双曲线
一般地,设直线l:y=kx+m
(m≠0)①
双曲线C:-=1
(a>0,b>0)②
把①代入②得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.
(1)当b2-a2k2=0,即k=±时,直线l与双曲线的渐近线平行,直线与双曲线C相交于________.
(2)当b2-a2k2≠0,即k≠±时,
Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2).
Δ>0?直线与双曲线有________公共点,此时称直线与双曲线相交;
Δ=0?直线与双曲线有________公共点,此时称直线与双曲线相切;
Δ<0?直线与双曲线________公共点,此时称直线与双曲线相离.
作业设计
一、选择题
1.下列曲线中离心率为的是( )
A.-=1
B.-=1
C.-=1
D.-=1
2.双曲线-=1的渐近线方程是( )
A.y=±x
B.y=±x
C.y=±x
D.y=±x
3.双曲线与椭圆4x2+y2=1有相同的焦点,它的一条渐近线方程为y=x,则双曲线的方程为( )
A.2x2-4y2=1
B.2x2-4y2=2
C.2y2-4x2=1
D.2y2-4x2=3
4.设双曲线-=1(a>0,b>0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为( )
A.y=±x
B.y=±2x
C.y=±x
D.y=±x
5.直线l过点(,0)且与双曲线x2-y2=2仅有一个公共点,则这样的直线有( )
A.1条
B.2条
C.3条
D.4条
6.已知双曲线-=1
(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为( )
A
.
B
C.
2
D
.
二、填空题
7.两个正数a、b的等差中项是,一个等比中项是,且a>b,则双曲线-=1的离心率e=______.
8.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且a=10,c-b=6,则顶点A运动的轨迹方程是________________.
9.与双曲线-=1有共同的渐近线,并且经过点(-3,2)的双曲线方程为
__________.
三、解答题
10.根据下列条件,求双曲线的标准方程.
(1)经过点,且一条渐近线为4x+3y=0;
(2)P(0,6)与两个焦点连线互相垂直,与两个顶点连线的夹角为.
11.设双曲线x2-=1上两点A、B,AB中点M(1,2),求直线AB的方程.
能力提升
12.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
A.
B.
C.
D.
13.设双曲线C:-y2=1
(a>0)与直线l:x+y=1相交于两个不同的点A、B.
(1)求双曲线C的离心率e的取值范围;
反思感悟
1.双曲线-=1
(a>0,b>0)既关于坐标轴对称,又关于坐标原点对称;其顶点为(±a,0),实轴长为2a,虚轴长为2b;其上任一点P(x,y)的横坐标均满足|x|≥a.
2.双曲线的离心率e=的取值范围是(1,+∞),其中,且=,离心率e越大,双曲线的开口越大.可以通过a、b、c的关系,列方程或不等式求离心率的值或范围.
3.双曲线
(a>0,b>0)的渐近线方程为y=±x,也可记为=0;与双曲线具有相同渐近线的双曲线的方程可表示为=λ
(λ≠0).
2.3.2 双曲线的简单几何性质
知识梳理
1.
标准方程
-=1(a>0,b>0)
-=1(a>0,b>0)
图形
性质
焦点
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
焦距
|F1F2|=2c
范围
x≥a或x≤-a,y∈R
y≥a或y≤-a,x∈R
对称性
关于x轴、y轴和原点对称
顶点
(-a,0),(a,0)
(0,-a),(0,a)
轴长
实轴长=2a,虚轴长=2b
离心率
e=(e>1)
渐近线
y=±x
y=±x
2.(1)一点 (2)两个 一个 没有
作业设计
1.B [∵e=,∴e2==,∴=,故选B.]
2.A
3.C [由于椭圆4x2+y2=1的焦点坐标为,
则双曲线的焦点坐标为,又由渐近线方程为y=x,得=,即a2=2b2,又由2=a2+b2,得a2=,b2=,又由于焦点在y轴上,因此双曲线的方程为2y2-4x2=1.故选C.]
4.C [由题意知,2b=2,2c=2,则b=1,c=,a=;双曲线的渐近线方程为y
=±x.]
5.C [点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点.]
6.B [||PF1|-|PF2||=2a,即3|PF2|=2a,
所以|PF2|=≥c-a,即2a≥3c-3a,即5a≥3c,
则≤.]
7.
解析 a+b=5,ab=6,解得a,b的值为2或3.
又a>b,∴a=3,b=2.∴c=,从而e==.
8.-=1(x>3)
解析 以BC所在直线为x轴,BC的中点为原点建立直角坐标系,则B(-5,0),C(5,0),而|AB|-|AC|=6<10.故A点的轨迹是双曲线的右支,其方程为-=1(x>3).
9.-=1
解析 ∵所求双曲线与双曲线-=1有相同的渐近线,∴可设所求双曲线的方程为-=λ
(λ≠0).∵点(-3,2)在双曲线上,
∴λ=-=.
∴所求双曲线的方程为-=1.
10.解 (1)因直线x=与渐近线4x+3y=0的交点坐标为,而3<|-5|,故双曲线的焦点在x轴上,设其方程为-=1,由
解得故所求的双曲线方程为-=1.
(2)设F1、F2为双曲线的两个焦点.依题意,它的焦点在x轴上.
因为PF1⊥PF2,且|OP|=6,
所以2c=|F1F2|=2|OP|=12,所以c=6.
又P与两顶点连线夹角为,
所以a=|OP|·tan=2,所以b2=c2-a2=24.
故所求的双曲线方程为-=1.
11.解 方法一 (用韦达定理解决)
显然直线AB的斜率存在.
设直线AB的方程为y-2=k(x-1),
即y=kx+2-k,由
得(2-k2)x2-2k(2-k)x-k2+4k-6=0,
当Δ>0时,设A(x1,y1),B(x2,y2),
则1==,
∴k=1,满足Δ>0,∴直线AB的方程为y=x+1.
方法二 (用点差法解决)
设A(x1,y1),B(x2,y2),则,
两式相减得(x1-x2)(x1+x2)=(y1-y2)(y1+y2).
∵x1≠x2,∴=,
∴kAB==1,∴直线AB的方程为y=x+1,
代入x2-=1满足Δ>0.
∴直线AB的方程为y=x+1.
12.
D [设双曲线方程为-=1(a>0,b>0),如图所示,双曲线的一条渐近线方程为y=x,
而kBF=-,∴·(-)=-1,整理得b2=ac.
∴c2-a2-ac=0,两边同除以a2,得e2-e-1=0,
解得e=或e=(舍去),故选D.]
13.解 (1)由双曲线C与直线l相交于两个不同的点得有两个不同的解,
消去y并整理得(1-a2)x2+2a2x-2a2=0,①
∴
解得-又∵a>0,∴0∵双曲线的离心率e==
,
∴0且e≠.
∴双曲线C的离心率e的取值范围是
∪(,+∞).
(2)设A(x1,y1),B(x2,y2),P(0,1).
∴(x1,y1-1)=(x2,y2-1),
由此可得x1=x2.∵x1,x2都是方程①的根,
且1-a2≠0,∴x1+x2=x2=-,
x1x2=x=-,消去x2得-=,
即a2=.又∵a>0,∴a=.