课时分层作业(三十三) 简单随机抽样
(建议用时:40分钟)
一、选择题
1.下列抽样方法是简单随机抽样的是( )
A.环保局人员取河水进行化验
B.用抽签的方法产生随机数表
C.福利彩票用摇奖机摇奖
D.老师抽取数学成绩最优秀的2名同学代表班级参加数学竞赛
C [简单随机抽样要求总体中的个体数有限,每个个体有相同的可能性被抽到.故选C.]
2.为了了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了1
000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是( )
A.总体指的是该市参加升学考试的全体学生
B.个体指的是1
000名学生中的每一名学生
C.样本容量指的是1
000名学生
D.样本是指1
000名学生的数学成绩
D [因为是了解学生的数学成绩的情况,因此样本是指1
000名学生的数学成绩,而不是学生.]
3.对于简单随机抽样,每个个体被抽到的机会( )
A.不相等
B.相等
C.不确定
D.与抽样次序有关
B [简单随机抽样中每一个个体被抽到的机会相等.]
4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )
A.36%
B.72%
C.90%
D.25%
C [×100%=90%.]
5.从全校2
000名小学女生中用随机数法抽取300名调查其身高,得到样本量的平均数为148.3
cm,则可以推测该校女生的身高( )
A.一定为148.3
cm
B.高于148.3
cm
C.低于148.3
cm
D.约为148.3
cm
D [由抽样调查的意义可以知道该校女生的身高约为148.3
cm.]
二、填空题
6.要从100名同学中抽取10名同学调查其期末考试的数学成绩,下图是电子表格软件生成的部分随机数,若从第一个数71开始抽取,则抽取的10位同学的编号依次为________.
71,7,4,1,15,2,3,5,14,11 [由题图可知,抽取的10名同学的号码依次为71,7,4,1,15,2,3,5,14,11.]
7.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数法在该中学抽取容量为n的样本,则n等于________.
200 [由题意可知:=0.2,解得n=200.]
8.某工厂抽取50个机械零件检验其直径大小,得到如下数据
直径(单位:cm)
12
13
14
频数
12
34
4
估计这50个零件的直径大约为________
cm.
12.84 [==12.84
cm.]
三、解答题
9.某电视台举行颁奖典礼,邀请20名甲、乙、丙地艺人演出,其中从30名丙地艺人中随机挑选10人,从18名甲地艺人中随机挑选6人,从10名乙地艺人中随机挑选4人.试用抽签法确定选中的艺人.
[解] (1)将30名丙地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,揉成团,然后放入一个不透明小筒中摇匀,从中逐个不放回地抽出10个号签,则相应编号的艺人参加演出;
(2)运用相同的办法分别从10名乙地艺人中抽取4人,从18名甲地艺人中抽取6人.
10.设某公司共有100名员工,为了支援西部基础建设,现要从中随机抽出12名员工组成精准扶贫小组,请写出利用随机数法抽取该样本的步骤.
[解] 第一步,将100名员工进行编号:00,01,02,…,99;
第二步,利用随机数工具产生0~100内的随机数;
第三步,把产生的随机数作为抽中的编号,使与编号对应的员工进入样本,直到抽足样本所需要的人数.
11.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为( )
A.
B.k+m-n
C.
D.不能估计
C [设参加游戏的小孩有x人,则=,x=.]
12.某学校抽取100位老师的年龄,得到如下数据
年龄(单位:岁)
32
34
38
40
42
43
45
46
48
频数
2
4
20
20
26
10
8
6
4
则估计这100位老师的样本的平均年龄为( )
A.42岁
B.41岁
C.41.1岁
D.40.1岁
C [=
=41.1(岁),即这100位老师的样本的平均年龄约为41.1岁.]
13.(一题两空)一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.
[因为简单随机抽样时每个个体被抽到的可能性为=,所以某一特定小球被抽到的可能性是.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为.]
14.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
甲
27
38
30
37
35
31
乙
35
29
40
34
30
36
分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数并判断选谁参加比赛比较合适?
[解] 甲=
=33.
乙=
=34.
因为甲<乙,故选乙参加比赛较合适.
15.为了节约用水,制定阶梯水价,同时又不加重居民生活负担,某市物价部门在8月份调查了本市某小区300户居民中的50户居民,得到如下数据:
用水量(单位:m3)
18
19
20
21
22
23
24
25
26
频数
2
4
4
6
12
10
8
2
2
物价部门制定的阶梯水价实施方案为:
月用水量
水价(单位:元/m3)
不超过21
m3
3
超过21
m3的部分
4.5
(1)计算这50户居民的用水的平均数;
(2)写出水价的函数关系式,并计算用水量为28
m3时的水费;
(3)物价部门制定水价合理吗?为什么?
[解] (1)=
=22.12
m3.
(2)设月用水量为x,则水价为
f(x)=
当x=28时,f(28)=4.5×28-31.5=94.5元.
(3)不合理.从时间上看,物价部门是在8月份调查的居民用水量,而这个月,该市的居民用水量普遍偏高,不能代表居民全年的月用水量,从居民比例上看,仅仅有16户居民,即32%的居民月用水量没有超过21
m3,加重了大部分居民的负担.
PAGE课时分层作业(三十四) 分层随机抽样
(建议用时:40分钟)
一、选择题
1.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.
方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个.
方法2:采用分层随机抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.
对于上述问题,下列说法正确的是( )
①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是;
②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;
③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征;
④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征.
A.①②
B.①③
C.①④
D.②③
B [根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法2抽到的样本更有代表性,③正确,④错误.故①③正确.]
2.某商场有四类食品,食品类别和种数见下表.现从中抽取一个容量为20的样本进行食品安全检测.若采用分层随机抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
类别
粮食类
植物油类
动物性食品类
果蔬类
种数
40
10
30
20
A.7
B.6
C.5
D.4
B [由已知可得抽样比为:=,
∴抽取植物油类与果蔬类食品种数之和为(10+20)×=6.]
3.当前,国家正分批修建经济适用房以解决低收入家庭住房紧张的问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户.若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层随机抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )
A.40
B.30
C.20
D.36
A [由题意可知90×=40.]
4.在1
000个球中有红球50个,从中抽取100个进行分析,如果用分层随机抽样的方法对球进行抽样,则应抽红球( )
A.33个
B.20个
C.5个
D.10个
C [设应抽红球x个,=,得x=5.]
5.为了保证分层随机抽样时每个个体等可能地被抽取,必须要求( )
A.每层不等可能抽样
B.每层抽取的个体数相等
C.每层抽取的个体可以不一样多,但必须满足抽取ni=n×(i=1,2,…,k)个个体.(其中i是层数,n是抽取的样本容量,Ni是第i层中个体的个数,N是总体的容量)
D.只要抽取的样本容量一定,每层抽取的个体数没有限制
C [A不正确.B中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B也不正确.C中对于第i层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C正确.D不正确.]
二、填空题
6.一支田径队有男、女运动员98人,其中男运动员有56人.按男、女比例用分层随机抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员的人数是________.
12 [抽取女运动员的人数为×28=12.]
7.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层随机抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
15 [高二年级学生人数占总数的,样本容量为50,则50×=15.]
8.某分层随机抽样中,有关数据如下:
样本量
平均数
第1层
45
3
第2层
35
4
此样本的平均数为________.
3.437
5 [=×3+×4=3.437
5.]
三、解答题
9.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
[解] 用分层随机抽样来抽取样本,步骤如下:
(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.
(2)确定每层抽取个体的个数.抽样比为=,
则在不到35岁的职工中抽取125×=25(人);
在35岁至49岁的职工中抽取280×=56(人);
在50岁及50岁以上的职工中抽取95×=19(人).
(3)在各层分别按随机数法抽取样本.
(4)汇总每层抽样,组成样本.
10.某高级中学共有学生3
000名,各年级男、女生人数如下表:
高一年级
高二年级
高三年级
女生
487
x
y
男生
513
560
z
已知从全校学生中随机抽取1名学生,抽到高二年级女生的概率是0.18.
(1)问高二年级有多少名女生?
(2)现对各年级用分层随机抽样的方法从全校抽取300名学生,问应从高三年级抽取多少名学生?
[解] (1)由=0.18得x=540,所以高二年级有540名女生.
(2)高三年级人数为:y+z=3
000-(487+513+540+560)=900.
∴×300=90,故应从高三年级抽取90名学生.
11.某校共有2
000名学生参加跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:
高一年级
高二年级
高三年级
跑步人数
a
b
c
登山人数
x
y
z
其中a∶b∶c=2∶5∶3,全校参加登山的人数占总人数的.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个容量为200的样本进行调查,则高三年级参加跑步的学生中应抽取的人数为( )
A.25
B.35
C.45
D.55
C [由题意,全校参加跑步的人数占总人数的,高三年级参加跑步的总人数为×2
000×=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取×450=45(人).]
12.(多选题)某公司生产三种型号的轿车,产量分别为1
200辆,6
000辆和2
000辆.为检验该公司的产品质量,公司质监部门要抽取46辆进行检验,则下列说法正确的是( )
A.应采用分层随机抽样抽取
B.应采用抽签法抽取
C.三种型号的轿车依次抽取6辆,30辆,10辆
D.这三种型号的轿车,每一辆被抽到的概率都是相等的
ACD [由于总体按型号分为三个子总体,所以应采用分层随机抽样抽取,A正确;
因为总体量较大,故不宜采用抽签法,所以B错误;
设三种型号的轿车依次抽取x辆,y辆,z辆,
则有===,
解得所以三种型号的轿车依次抽取6辆、30辆、10辆,故C正确;
由分层随机抽样的意义可知D也正确.]
13.(一题两空)高一和高二两个年级的同学参加了数学竞赛,高一年级有450人,高二年级有350人,通过分层随机抽样的方法抽取了160个样本,得到两年级的竞赛成绩分别为80分和90分,则
(1)高一、高二抽取的样本量分别为________.
(2)高一和高二数学竞赛的平均分约为________分.
(1)90,70 (2)84.375 [(1)由题意可得高一年级抽取的样本量为×160=90,高二年级抽取的样本量为×160=70.
(2)高一和高二数学竞赛的平均分约为=×80+×90=84.375分.]
14.某单位有2
000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各岗位中的人数情况如下表所示:
管理
技术开发
营销
生产
合计
老年
40
40
40
80
200
中年
80
120
160
240
600
青年
40
160
280
720
1
200
合计
160
320
480
1
040
2
000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个有25人参与的讨论单位发展与薪金调整方案的座谈会,则应怎样抽选出席人?
[解] (1)用分层随机抽样法,并按老年职工4人,中年职工12人,青年职工24人抽取.
(2)用分层随机抽样法,并按管理岗位2人,技术开发岗位4人,营销岗位6人,生产岗位13人抽取.
15.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
[解] (1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,
则有=47.5%,=10%.
解得b=50%,c=10%.
故a=1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占的比例为40%,50%,10%.
(2)游泳组中,抽取的青年人为200××40%=60(人);
抽取的中年人为200××50%=75(人);
抽取的老年人为200××10%=15(人).
PAGE课时分层作业(三十五) 获取数据的途径
(建议用时:40分钟)
一、选择题
1.为了研究近年来我国高等教育发展状况,小明需要获取近年来我国大学生入学人数的相关数据,他获取这些数据的途径最好是( )
A.通过调查获取数据
B.通过试验获取数据
C.通过观察获取数据
D.通过查询获得数据
D [因为近年来我国大学生入学人数的相关数据有所存储,所以小明获取这些数据的途径最好是通过查询获得数据.]
2.若要研究某城市家庭的收入情况,获取数据的途径应该是( )
A.通过调查获取数据
B.通过试验获取数据
C.通过观察获取数据
D.通过查询获得数据
A [因为要研究的是某城市家庭的收入情况,所以通过调查获取数据.]
3.下列调查方案中,抽样方法合适、样本具有代表性的是( )
A.用一本书第1页的字数估计全书的字数
B.为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生
C.在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些名人的名字,要求每个学生只能在一个名字下面画“√”,以了解全省中学生最崇拜的人物是谁
D.为了调查我国小学生的健康状况,共抽取了100名小学生进行调查
B [A中样本缺少代表性(第1页的字数一般较少);B中抽样保证了随机性原则,样本具有代表性;对于C,城市中学与农村中学的规模往往不同,学生崇拜的人物也未必在所列的名单之中,这些都会影响数据的代表性;D中总体数量很大,而样本容量太少,不足以体现总体特征.]
4.影响获取数据可靠程度的因素不包括( )
A.获取方法设计
B.所用专业测量设备的精度
C.调查人员的认真程度
D.数据的大小
D [数据的大小不影响获取数据可靠程度.]
5.研究下列问题:
①某城市元旦前后的气温;②某种新型电器元件使用寿命的测定;③电视台想知道某一个节目的收视率;④银行在收进储户现金时想知道有没有假钞.一般通过试验获取数据的是( )
A.①②
B.③④
C.②
D.④
C [①通过观察获取数据,③④通过调查获取数据,只有②通过试验获取数据.]
二、填空题
6.为了研究我国房地产市场发展的状况,小李从图书馆借阅了《中国统计年鉴》,小李获得数据的途径是________.
通过查询获得数据 [借阅《中国统计年鉴》属于通过查询获得数据.]
7.为了调查本班同学对班级体育活动的意见,应该如何合理安排抽样才能提高样本的代表性?答:________.
[答案] 按照男、女生人数分层随机抽样
8.学校兴趣小组要对本市某社区的居民睡眠时间进行研究,得到了以下10个数据(单位:h):
5.6,7.8,8.0,7.3,
3.2,7.9,6.8,7.5,8.6,7.8.
去掉数据________能很好地提高样本数据的代表性.
3.2 [因为数据3.2明显低于其它几个数据,是极端值,所以去掉这个数据,能够更好地提高样本数据的代表性.]
三、解答题
9.某公司想调查一下本公司员工对某项规章制度的意见,由于本公司车间工人工作任务繁重,负责该项事务的公司办公室向本公司的50名中层及以上领导干部派发了问卷,统计后便得到了调查意见,公司办公室获取数据的途径是什么?你认为该调查结果具有代表性吗?为什么?
[解] 公司办公室是通过调查获取数据的.但是这些数据不具有代表性.因为公司的规章制度往往是领导干部制定的,而这部分员工的意见不能很好地代表全体员工,所以结果是片面的,不合理的,不具有代表性.
10.为了创建“和谐平安”校园,某校决定在开学前将学校的电灯电路使用情况进行检查,以便排除安全隐患,获得路灯的相关数据应该用什么方法?为什么?
[解] 由于一个学校的电灯电路数目不算大,属于有限总体问题,所以应该通过调查获取数据,并且对创建“和谐平安”校园来说,必须排除任一潜在或已存在的安全隐患,故必须用普查的方式.
11.下列调查工作适合采用普查的是( )
A.环保部门对淮河水域的水污染情况的调查
B.电视台对某电视节目收视率的调查
C.质检部门对各厂家生产的电池使用寿命的调查
D.企业在给职工做工作服前进行的尺寸大小的调查
D [A、B中的调查,在理论上来说采用普查是可行的,但是普查会费时费力;C中,质检部门对各厂家生产的电池使用寿命的调查不能采用普查,因为调查时的检验对电池具有破坏性;D中,企业在给职工做工作服前进行的尺寸大小的调查必须采用普查,否则工人的工作服会不合体.故选D.]
12.下列调查所抽取的样本具有代表性的是( )
A.利用某地七月份的日平均最高气温值估计该地全年的日平均最高气温
B.在农村调查市民的平均寿命
C.利用一块实验水稻田的产量估计水稻的实际产量
D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验
D [A项中某地七月份的日平均最高气温值不能代表全年的日平均最高气温;B项中在农村调查得到的平均寿命不能代表市民的平均寿命;C项中实验田的产量与水稻的实际产量相差可能较大,只有D项正确.]
13.(一题两空)为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:
(1)测量少年体校中180名男子篮球、排球队员的身高;
(2)查阅有关外地180名男生身高的统计资料;
(3)用分层随机抽样的方法从初中三个年级抽取180名男生调查其身高.
为了达到估计本市初中这三个年级男生身高分布的目的,则上述调查方案不合理的是________,合理的是________.
(1)(2) (3) [(1)中,少年体校中男子篮球、排球运动员的身高一定高于一般情况,因此不能用测量的结果去估计总体的结果,故方案(1)不合理;(2)中,用外地学生的身高也不能准确地反映本地学生身高的实际情况,故方案(2)不合理;(3)中,由于初中三个年级的男生身高是不同的,所以应该用分层随机抽样的方法从初中三个年级抽取180名男生调查其身高,方案(3)合理.]
14.某地气象台记录了本地6月份的日最高气温(如下表所示),
日最高气温(单位:℃)
20
22
24
25
26
28
29
30
频数
5
4
6
6
4
2
2
1
(1)气象台获取数据的途径是什么?
(2)求本地6月份的日最高气温的平均数.(精确到0.1)
[解] (1)通过观察获取数据.
(2)本地6月份的日最高气温的平均数为=
≈24.3℃.
15.某校高中学生有900人,校医务室想对全体高中学生的身高情况做一次调查,为了不影响正常教学活动,准备抽取50名学生作为调查对象.校医务室若从高一年级中抽取50名学生的身高来估计全校高中学生的身高,你认为这样的调查结果会怎样?该问题中的总体和样本是什么?
[解] 由于学生的身高会随着年龄的增长而增高,校医务室想了解全校高中学生的身高情况,在抽样时应当关注高中各年级学生的身高,并且还要分性别进行抽查.如果只抽取高一的学生,结果一定是片面的.
这个问题涉及的调查对象的总体是某校全体高中学生的身高,其中准备抽取的50名学生的身高是样本.
PAGE课时分层作业(三十六) 总体取值规律的估计
(建议用时:40分钟)
一、选择题
1.容量为100的样本数据,按从小到大的顺序分为8组,如下表:
组号
1
2
3
4
5
6
7
8
频数
10
13
x
14
15
13
12
9
第三组的频数和频率分别是( )
A.14和0.14
B.0.14和14
C.和0.14
D.和
A [x=100-(10+13+14+15+13+12+9)=100-86=14,第三组的频率为=0.14.]
2.如图是甲、乙、丙、丁四组人数的扇形统计图的部分结果,根据扇形统计图的情况可以知道丙、丁两组人数和为( )
A.250
B.150
C.400
D.300
A [甲组人数是120,占30%,则总人数是=400(人).则乙组人数是400×7.5%=30(人),则丙、丁两组人数和为400-120-30=250.]
3.如图所示是某校高一年级学生到校方式的条形统计图,根据图形可得出骑自行车人数占高一年级学生总人数的( )
A.20%
B.30%
C.50%
D.60%
B [某校高一年级学生总数为60+90+150=300(人),骑自行车人数为90人,骑自行车人数占高一年级学生总数的百分比为×100%=30%.]
4.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[50,60)内的汽车有( )
A.30辆
B.40辆
C.60辆
D.80辆
C [因为小长方形的面积即为对应的频率,时速在[50,60)内的频率为0.3,
所以有200×0.3=60(辆).]
5.某调查机构调查了某地100个新生婴儿的体重,并根据所得数据画出了样本的频率分布直方图(如图所示),则这100个新生婴儿中,体重(单位:kg)在[3.2,4.0)的人数是( )
A.30
B.40
C.50
D.55
B [在[3.2,3.6)内的频率为0.625×0.4=0.25,频数为0.25×100=25,
在[3.6,4.0)内的频率为0.375×0.4=0.15,频数为0.15×100=15.
则这100个新生婴儿中,体重在[3.2,4.0)内的有25+15=40(人).故选B.]
二、填空题
6.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
从折线图上两人射击命中环数的走势看,最有潜力的是________.
[答案] 乙
7.某校为了解高一学生寒假期间的阅读情况,抽查并统计了100名同学的某一周阅读时间,绘制了频率分布直方图(如图所示),那么这100名学生中阅读时间在[4,8)小时内的人数为________.
54 [根据频率分布直方图,可得阅读时间在[4,8)小时内的频率为(0.12+0.15)×2=0.54,所以这100名学生中阅读时间在[4,8)小时内的人数为100×0.54=54.]
8.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.则频率分布直方图中x的值为________.
0.004
4 [∵(0.002
4+0.003
6+0.006
0+x+0.002
4+0.001
2)×50=1,∴x=0.004
4.]
三、解答题
9.为加强中学生实践创新能力和团队精神的培养,促进教育教学改革,某市教育局将举办全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表解答下列问题:
分组
频数
频率
一
[60.5,70.5)
a
0.26
二
[70.5,80.5)
15
c
三
[80.5,90.5)
18
0.36
四
[90.5,100.5]
b
d
合计
50
e
(1)求a,b,c,d,e的值;
(2)作出频率分布直方图.
[解] (1)根据题意,得分在[60.5,70.5)内的频数是a=50×0.26=13,在[90.5,100.5]内的频数是b=50-13-15-18=4,在[70.5,80.5)内的频率是c==0.30,在[90.5,100.5]内的频率是d==0.08,频率和e=1.00.
(2)根据频率分布表作出频率分布直方图,如图所示.
10.某省有关部门要求各中小学要把“每天锻炼一小时”写入课程表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:
图1
(1)该校对多少名学生进行了抽样调查?
(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?
(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数.
图2
[解] (1)由题图1知4+8+10+18+10=50(名).即该校对50名学生进行了抽样调查.
(2)本次调查中,最喜欢篮球活动的有18人,
×100%=36%.
即最喜欢篮球活动的人数占被调查人数的36%.
(3)1-(30%+26%+24%)=20%,200÷20%=1
000(人),×100%×1
000=160(人).
即估计全校学生中最喜欢跳绳活动的人数约为160人.
11.(多选题)容量为100的样本,其数据分布在[2,18]内,将样本数据分为4组:[2,6),[6,10),[10,14),[14,18],得到频率分布直方图如图所示,则下列说法中正确的是( )
A.样本数据分布在[6,10)内的频率为0.32
B.样本数据分布在[10,14)内的频数为40
C.样本数据分布在[2,10)内的频数为40
D.估计总体数据大约有10%分布在[10,14)内
ABC [对于A,由题图可得,样本数据分布在[6,10)内的频率为0.08×4=0.32,所以A正确.对于B,由题图可得,样本数据分布在[10,14)内的频数为100×(0.1×4)=40,所以B正确.对于C,由题图可得,样本数据分布在[2,10)内的频数为100×(0.02+0.08)×4=40,所以C正确.对于D,由题图可估计,总体数据分布在[10,14)内的比例为0.1×4=0.4=40%,所以D错误.故选ABC.]
12.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n的值为( )
A.20
B.27
C.6
D.60
D [∵n·=27,∴n=60.]
13.(一题两空)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图,则a=________.现采用分层随机抽样的方法,从第3,4,5组中随机抽取6名学生,则第3,4,5组抽取的学生人数依次为________.
0.04 3,2,1 [由(0.01+0.02+a+0.06+0.07)×5=1,得a=0.04.
设第3,4,5组抽取的学生人数依次为x,y,z,
则x∶y∶z=0.06∶0.04∶0.02=3∶2∶1,
又x+y+z=6,所以x=3,y=2,z=1.]
14.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数最多?有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?
[解] (1)依题意知第三组的频率为=.又∵第三组频数为12,
∴本次活动的参评作品数为=60件.
(2)由频率分布直方图,可以看出第四组上交的作品数量最多,
共有60×=18件.
(3)第四组获奖率是=.
第六组上交的作品数为60×=3件.
∴第六组的获奖率为,显然第六组的获奖率较高.
15.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:①1.5小时以上;②1~1.5小时;③0.5~1小时;④0.5小时以下.下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:
图(1) 图(2)
(1)本次一共调查了多少名学生?
(2)在图(1)中将②对应的部分补充完整;
(3)若该校有3
000名学生,试估计全校学生平均每天参加体育活动的时间在0.5小时以下的人数.
[解] (1)从题图中知,选①的共60名学生,占总学生数的百分比为30%,所以总学生数为60÷30%=200,即本次一共调查了200名学生.
(2)被调查的学生中,选②的有200-60-30-10=100名,补充完整的条形统计图如图所示.
(3)3
000×5%=150(名),估计全校有150名学生平均每天参加体育活动的时间在0.5小时以下.
PAGE课时分层作业(三十七) 总体百分位数的估计
(建议用时:40分钟)
一、选择题
1.数据12,14,15,17,19,23,27,30的第70百分位数是( )
A.
14
B.17
C.
19
D.23
D [因为8×70%=5.6,故70%分位数是第6项数据23.]
2.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.估计棉花纤维的长度的样本数据的90%分位数是( )
A.32.5
mm
B.33
mm
C.33.5
mm
D.34
mm
A [棉花纤维的长度在30
mm以下的比例为
(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,
在35
mm以下的比例为85%+10%=95%,
因此,90%分位数一定位于[30,35]内,由30+5×=32.5,
可以估计棉花纤维的长度的样本数据的90%分位数是32.5
mm.]
3.如图所示是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,由图可知这10天最低气温的第80百分位数是( )
A.-2
B.0
C.1
D.2
D [由折线图可知,这10天的最低气温按照从小到大的顺序排列为:
-3,-2,-1,-1,0,0,1,
2,
2,
2,
因为共有10个数据,所以10×80%=8,是整数,则这10天最低气温的第80百分位数是=2.]
4.某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,第50百分位数为b,则有( )
A.a=13.7,
b=15.5
B.a=14,
b=15
C.a=12,
b=15.5
D.a=14.7,
b=15
D [把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=×(10+12+14+14+15+15+16+17+17+17)=14.7,第50百分位数为b==15.]
5.已知甲、乙两组数据:
甲组:27,28,39,40,m,50;
乙组:24,n,34,43,48,52.
若这两组数据的第30百分位数、第80百分位数分别相等,则等于( )
A.
B.
C.
D.
A [因为30%×6=1.8,80%×6=4.8,所以第30百分位数为n=28,第80百分位数为m=48,所以==.]
二、填空题
6.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的第________百分位数.
30 [因为[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,所以60分为成绩的第30百分位数.]
7.某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩的70%分位数约为________秒.
16.5 [设成绩的70%分位数为x,因为=0.55,=0.85,
所以x∈
[16,17),所以0.55+(x-16)×=0.70,解得x=16.5秒.]
8.已知30个数据的第60百分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是________.
8.6 [由于30×60%=18,设第19个数据为x,则=8.2,解得x=8.6,即第19个数据是8.6.]
三、解答题
9.某网络营销部门随机抽查了某市200名网友在2019年11月11日的网购金额,所得数据如下表:
网购金额(单位:千元)
人数
频率
[0,1)
16
0.08
[1,2)
24
0.12
[2,3)
x
p
[3,4)
y
q
[4,5)
16
0.08
[5,6]
14
0.07
合计
200
1.00
已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.
(1)试确定x,y,p,q的值,并补全频率分布直方图(如图).
(2)估计网购金额的25%分位数(结果保留3位有效数字).
[解] (1)根据题意有:
解得
所以p=0.4,q=0.25.
补全频率分布直方图如图所示:
(2)
由(1)可知,网购金额不高于2千元的频率为0.08+0.12=0.2,
网购金额不高于3千元的频率为0.2+0.4=0.6,
所以网购金额的25%分位数在[2,3)内,
则网购金额的25%分位数为2+×1≈2.13千元.
10.某市对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有5人.
(1)求x;
(2)求抽取的x人的年龄的50%分位数(结果保留整数);
(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,
求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对一带一路的认知程度,并谈谈你的感想.
[解] (1)第一组频率为0.01×5=0.05,所以x==100.
(2)由题图可知年龄低于30岁的所占比例为40%,年龄低于35岁的所占比例为70%,所以抽取的x人的年龄的50%分位数在[30,35)内,由30+5×=≈32,所以抽取的x人的年龄的50%分位数为32.
(3)把参赛的10人的成绩按从小到大的顺序排列:
88,90,92,92,95,96,96,97,98,99,
计算10×20%=2,所以这10人成绩的20%分位数为=91,
这10人成绩的平均数为(88+90+92+92+95+96+96+97+98+99)=94.3.
评价:从百分位数和平均数来看,参赛人员的认知程度很高.
感想:结合本题和实际,符合社会主义核心价值观即可.
11.数据3.2,3.4,3.8,4.2,4.3,4.5,x,6.6的第65百分位数是4.5,则实数x的取值范围是( )
A.[4.5,+∞)
B.[4.5,6.6)
C.(4.5,+∞)
D.[4.5,6.6]
A [因为8×65%=5.2,所以这组数据的第65百分位数是第6项数据4.5,则x≥4.5,故选A.]
12.(多选题)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则下列说法正确的是( )
甲 乙
A.甲的成绩的平均数等于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的第80百分位数等于乙的成绩的第80百分位数
D.甲的成绩的极差大于乙的成绩的极差
AC [由题图可得,甲==6,乙==6,A项正确;
甲的成绩的中位数为6,乙的成绩的中位数为5,B项错误;
甲的成绩的第80百分位数=7.5,乙的成绩的第80百分位数=7.5,所以二者相等,C项正确;
甲的成绩的极差为4,乙的成绩的极差也为4,D项不正确.]
13.(一题两空)如图是某市2019年4月1日至4月7日每天最高、最低气温的折线统计图,这7天的日最高气温的第10百分位数为________,日最低气温的第80百分位数为________.
24
℃ 16
℃ [由折线图可知,把日最高气温按照从小到大排序,得24,
24.5,
24.5,
25,
26,26,
27.
因为共有7个数据,所以7×10%=0.7,不是整数,所以这7天日最高气温的第10百分位数是第1个数据,为24
℃.
把日最低气温按照从小到大排序,得12,
12,
13,
14,
15,
16,
17.
因为共有7个数据,所以7×80%=5.6,不是整数,所以这7天日最低气温的第80百分位数是第6个数据,为16
℃.]
14.下表记录了一个家庭6月份每天在食品上面的消费金额:(单位:元)
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第8天
第9天
第10天
31
29
26
32
34
28
34
31
34
34
第11天
第12天
第13天
第14天
第15天
第16天
第17天
第18天
第19天
第20天
35
26
27
35
34
28
28
30
32
28
第21天
第22天
第23天
第24天
第25天
第26天
第27天
第28天
第29天
第30天
32
26
35
34
35
30
28
34
31
29
求该家庭6月份每天在食品上面的消费金额的5%,25%,50%,75%,95%分位数.
[解] 该样本共有30个数据,所以30×5%=1.5,30×25%=7.5,30×50%=15,30×75%=22.5,30×95%=28.5.
将所有数据由小到大排列得:26,26,26,27,28,28,28,28,28,29,29,30,30,31,31,31,32,32,32,34,34,34,34,34,34,34,35,35,35,35.
从而得5个百分位数如下表:
百分位数
5%
25%
50%
75%
95%
消费金额/元
26
28
31
34
35
15.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层随机抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:
(1)估计总体400名学生中分数小于70的人数;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)根据该大学规定,把15%的学生划定为不及格,利用
(2)中的数据,确定本次测试的及格分数线,低于及格分数线的学生需要补考.
[解] (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,
所以样本中分数小于70的频率为1-0.6=0.4.
所以总体400名学生中分数小于70的人数为400×0.4=160.
(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,
分数在区间[40,50)内的人数为100-100×0.9-5=5.
所以总体中分数在区间[40,50)内的人数估计为400×=20.
(3)
设分数的第15百分位数为x,由(2)可知,分数小于50的频率为=0.1,分数小于60的频率为0.1+0.1=0.2,所以x∈[50,60),则0.1+(x-50)×0.01=0.15,
解得x=55,则本次考试的及格分数线为55分.
PAGE课时分层作业(三十八) 总体集中趋势的估计
(建议用时:40分钟)
一、选择题
1.七位评委为某跳水运动员打出的分数如下:
84,79,86,87,84,93,84,
则这组分数的中位数和众数分别是( )
A.84,85
B.84,84
C.85,84
D.85,85
B [把七位评委打出的分数按从小到大的顺序排列为:79,84,84,84,86,87,93,可知众数是84,中位数是84.]
2.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )
A.20
B.25
C.22.5
D.22.75
C [设中位数为x,则0.1+0.2+0.08×(x-20)=0.5,得x=22.5.]
3.16位参加百米半决赛同学的成绩各不相同,按成绩取前8位进入决赛.如果小刘知道了自己的成绩后,要判断他能否进入决赛.则其他15位同学成绩的下列数据中,能使他得出结论的是( )
A.平均数
B.极差
C.中位数
D.方差
C [判断是不是能进入决赛,只要判断是不是前8名,所以只要知道其他15位同学的成绩中是不是有8个高于他,也就是把其他15位同学的成绩排列后看第8个的成绩即可,小刘的成绩高于这个成绩就能进入决赛,低于这个成绩就不能进入决赛,这个第8名的成绩就是这15位同学成绩的中位数.]
4.某台机床加工的五批同数量的产品中次品数的频率分布如表:
次品数
0
1
2
3
4
频率
0.5
0.2
0.05
0.2
0.05
则次品数的平均数为( )
A.1.1
B.3
C.1.5
D.2
A [设数据xi出现的频率为pi(i=1,2,…,n),则x1,x2,…,xn的平均数为x1p1+x2p2+…+xnpn=0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1,故选A.]
5.已知样本数据x1,x2,…,x10,其中x1,x2,x3的平均数为a,而x4,x5,x6,…,x10的平均数为b,则样本数据的平均数为( )
A.
B.
C.
D.
B [前3个数据的和为3a,后7个数据的和为7b,样本平均数为10个数据的和除以10.]
二、填空题
6.一组数据2,x,4,6,10的平均数是5,则x=________.
3 [∵一组数据2,x,4,6,10的平均数是5,∴2+x+4+6+10=5×5,解得x=3.]
7.若某校高一年级8个班参加合唱比赛的得分如下:93,91,94,96,90,92,89,87,则这组数据的中位数和平均数分别是________.
91.5,91.5 [数据从小到大排列后可得其中位数为=91.5,
平均数为=91.5.]
8.某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在每一天各自课外阅读所用时间的数据,结果用条形统计图表示如下,根据条形统计图估计该校全体学生这一天平均每人的课外阅读时间为________
h.
0.9 [由条形统计图可得,这50名学生这一天平均每人的课外阅读时间为
=0.9(h),因此估计该校全体学生这一天平均每人的课外阅读时间为0.9
h.]
三、解答题
9.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如表所示:
成绩(单位:m)
1.50
1.60
1.65
1.70
1.75
1.80
1.85
1.90
人数
2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数、中位数与平均数.
[解] 在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70.
这组数据的平均数是=(1.50×2+1.60×3+…+1.90×1)=≈1.69(m).
故17名运动员成绩的众数、中位数、平均数依次为1.75
m,1.70
m,1.69
m.
10.现有某城市100户居民的月平均用电量(单位:度)的数据,根据这些数据,以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层随机抽样的方法抽取11户居民,则月平均用电量在[220,240)内的用户中应抽取多少户?
[解] (1)由(0.002+0.009
5+0.011+0.012
5+x+0.005+0.002
5)×20=1得x=0.007
5,
故直方图中x的值是0.007
5.
(2)月平均用电量的众数为=230.
∵(0.002+0.009
5+0.011)×20=0.45<0.5,
∴月平均用电量的中位数在[220,240)内,设中位数为a,
由(0.002+0.009
5+0.011)×20+0.012
5×(a-220)=0.5,得a=224,
即月平均用电量的中位数为224度.
(3)月平均用电量在[220,240)内的有0.012
5×20×100=25(户),月平均用电量在[240,260)内的有0.007
5×20×100=15(户),月平均用电量在[260,280)内的有0.005×20×100=10(户),月平均用电量在[280,300]内的有0.002
5×20×100=5(户),
抽取比例为=,
∴月平均用电量在[220,240)内的用户中应抽取25×=5(户).
11.以下为甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)
甲:9 12
x
24
27
乙:9 15
y
18
24
已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
A.12,
15
B.15,
15
C.15,
18
D.18,
18
C [因为甲组数据的中位数为15,所以x=15,又乙组数据的平均数为16.8,所以=16.8,y=18,故选C.]
12.甲、乙两组数的数据如下所示,则这两组数的平均数、极差及中位数相同的是( )
甲组:5,
12,
16,
21,
25,
37;
乙组:1,6,
14,18,38,39.
A.极差
B.中位数
C.平均数
D.都不相同
C [由题中数据可知极差不同,甲的中位数为=18.5,乙的中位数为=16,
甲==,
乙==,
所以甲、乙的平均数相同.故选C.]
13.(一题两空)某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为________;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1
020小时,980小时,1
030小时,估计这个企业生产的产品的平均使用寿命为________小时.
50 1
015 [由分层抽样可知,第一分厂应抽取100×50%=50(件).由样本的平均数估计总体的平均数,可知这批电子产品的平均使用寿命为1
020×50%+980×20%+1
030×30%=1
015(小时).]
14.甲、乙两人在相同条件下各打靶10次,每次打靶的成绩情况如图所示:
(1)请填写下表:
平均数
中位数
命中9环以上的次数(含9环)
甲
7
乙
(2)从下列三个不同角度对这次测试结果进行分析:
①从平均数和中位数相结合看,谁的成绩好些?
②从平均数和命中9环及9环以上的次数相结合看,谁的成绩好些?
③从折线图中两人射击命中环数的走势看,谁更有潜力?
[解] (1)由题图可知,甲打靶的成绩为:2,4,6,8,7,7,8,9,9,10;
乙打靶的成绩为:9,5,7,8,7,6,8,6,7,7.
甲的平均数是7,中位数是7.5,命中9环及9环以上的次数是3;
乙的平均数是7,中位数是7,命中9环及9环以上的次数是1.
所以表格填写如下:
平均数
中位数
命中9环以上的次数(含9环)
甲
7
7.5
3
乙
7
7
1
(2)由(1)知,甲、乙的平均数相同.
①甲、乙的平均数相同,甲的中位数比乙的中位数大,所以甲成绩较好.
②甲、乙的平均数相同,甲命中9环及9环以上的次数比乙多,所以甲成绩较好.
③从折线图中看,在后半部分,甲呈上升趋势,而乙呈下降趋势,故甲更有潜力.
15.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
甲离子残留百分比直方图 乙离子残留百分比直方图
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
[解] (1)由已知得0.70=a+0.20+0.15,故a=0.35.
b=1-0.05-0.15-0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为
2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为
3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
PAGE课时分层作业(三十九) 总体离散程度的估计
(建议用时:40分钟)
一、选择题
1.下列选项中,能反映一组数据的离散程度的是( )
A.平均数
B.中位数
C.方差
D.众数
C [由方差的定义,知方差反映了一组数据的离散程度.]
2.对一组样本数据xi(i=1,2,…,n),如将它们改为xi-m(i=1,2,…,n),其中m≠0,则下面结论正确的是( )
A.平均数与方差都不变
B.平均数与方差都变了
C.平均数不变,方差变了
D.平均数变了,方差不变
D [若x1,x2,…,xn的平均数为,方差为s2,则ax1+b,ax2+b,…,axn+b(a≠0)的平均数为a+b,方差为a2s2,标准差为,则正确答案应为D.]
3.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本的标准差为( )
A. B.
C.2 D.
D [∵样本a,0,1,2,3的平均数为1,∴=1,解得a=-1.则样本的方差s2=×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,故标准差为.故选D.]
4.高三学生李丽在一年的五次数学模拟考试中的成绩(单位:分)为:x,y,105,109,110.已知该同学五次数学成绩数据的平均数为108,方差为35.2,则|x-y|的值为( )
A.15
B.16
C.17
D.18
D [由题意得,=108,①
=35.2,②
由①②解得或所以|x-y|=18.故选D.]
5.在高一期中考试中,甲、乙两个班的数学成绩统计如下表:
班级
人数
平均分数
方差
甲
20
甲
2
乙
30
乙
3
其中甲=乙,则两个班数学成绩的方差为( )
A.3
B.2
C.2.6
D.2.5
C [由题意可知两个班的数学成绩平均数为=甲=乙,则两个班数学成绩的方差为
s2=×[2+(甲-)2]+×[3+(乙-)2]
=×2+×3=2.6.]
二、填空题
6.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:
甲
乙
丙
丁
平均数
8.5
8.7
8.8
8.0
方差s2
3.5
3.5
2.1
8.7
则参加奥运会的最佳人选应为________.
丙 [因为丙的平均数最大,方差最小,故应选丙.]
7.(一题两空)五个数1,2,3,4,a的平均数是3,则a=________,这五个数的标准差是________.
5 [由=3得a=5;
由s2=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2得,标准差s=.]
8.为了调查公司员工的健康状况,用分层随机抽样的方法抽取样本,已知所抽取的所有员工的平均体重为60
kg,标准差为60,男员工的平均体重为70
kg,标准差为50,女员工的平均体重为50
kg,标准差为60,若样本中有20名男员工,则女员工的人数为________.
200 [设男、女员工的权重分别为ω男,ω女,
由题意可知s2=ω男[s+(男-)2]+ω女[s+(女-)2],即
ω男[502+(70-60)2]+(1-ω男)[602+(50-60)2]=602,解得ω男=,ω女=,
因为样本中有20名男员工,所以样本中女员工的人数为200.]
三、解答题
9.甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定.
品种
第1年
第2年
第3年
第4年
第5年
甲
9.8
9.9
10.1
10
10.2
乙
9.4
10.3
10.8
9.7
9.8
[解] 甲品种的样本平均数为×(9.8+9.9+10.1+10+10.2)=10,样本方差为[(9.8-10)2+(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.
乙品种的样本平均数为×(9.4+10.3+10.8+9.7+9.8)=10,样本方差为
[(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.244.
因为0.244>0.02,所以由这组数据可以认为甲种水稻的产量比较稳定.
10.某学校统计教师职称及年龄,中级职称教师的人数为50人,其平均年龄为38岁,方差是2,高级职称的教师3人58岁,5人40岁,2人38岁,求该校中级职称和高级职称教师年龄的平均数和方差.
[解] 由已知条件可知高级职称教师的平均年龄为高==45,
年龄的方差为s=[3×(58-45)2+5×(40-45)2+2×(38-45)2]=73,
所以该校中级职称和高级职称教师的平均年龄为
=×38+×45≈39.2(岁),
该校中级职称和高级职称教师的年龄的方差是
s2=[2+(38-39.2)2]+[73+(45-39.2)2]=20.64.
11.(多选题)若样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,则对于样本2+x1,2+x2,…,2+xn,下列结论正确的是( )
A.平均数是10
B.平均数是11
C.方差为2
D.方差为3
BC [若x1,x2,…,xn的平均数为,方差为s,那么x1+a,x2+a,…,xn+a的平均数为+a,方差为s,故选BC.]
12.(多选题)某学校共有学生2
000人,其中高一800人,高二、高三各600人,学校对学生在暑假中每天的读书时间做了调查统计,全体学生每天的读书时间的平均数为=
3小时,方差为s2=
2.003,其中高一学生、高二学生每天读书时间的平均数分别为1=2.6,2=3.2,又已知三个年级学生每天读书时间的方差分别为s=1,s=2,s=3,则高三学生每天读书时间的平均数3可能是( )
A.3.2
B.3.3
C.2.7
D.4.5
BC [由题意可得
2.003=[1+(3-2.6)2]+[2+(3-3.2)2]+[3+(3-3)2],
解得3=3.3或2.7.]
13.由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).
1,1,3,3 [不妨设x1≤x2≤x3≤x4且x1,x2,x3,x4为正整数.
由条件知
即又x1,x2,x3,x4为正整数,
∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3.
∵s==1,
∴x1=x2=1,x3=x4=3.
由此可得4个数分别为1,1,3,3.]
14.我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100户居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值;
(2)用每组区间的中点作为每组用水量的平均值,这9组居民每人的月均用水量前四组的方差都为0.3,后5组的方差都为0.4,求这100户居民月均用水量的方差.
[解] (1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,
2),[2,
2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.
由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a×0.5,解得a=0.30.
(2)由题意可知,这9组月均用水量的平均数依次是1=0.25,2=0.75,3=1.25,4=1.75,5=2.25,6=2.75,7=3.25,8=3.75,9=4.25,
这100户居民的月均用水量为=0.04×0.25+0.08×0.75+0.15×1.25+0.21×1.75+0.25×2.25+0.15×2.75+0.06×3.25+0.04×3.75+0.02×4.25=2.03,
则这100户居民月均用水量的方差为
s2=0.04×[0.3+(0.25-2.03)2]+0.08×[0.3+(0.75-2.03)2]+0.15×[0.3+(1.25-2.03)2]+0.21×[0.3+(1.75-2.03)2]+0.25×[0.4+(2.25-2.03)2]+0.15×[0.4+(2.75-2.03)2]+0.06×[0.4+(3.25-2.03)2]+0.04×[0.4+(3.75-2.03)2]+0.02×[0.4+(4.25-2.03)2]=1.113
6.
15.为提倡节能减排,同时减轻居民负担,某市积极推进“一户一表”工程.非一户一表用户电费采用“合表电价”收费标准:0.65元/度.“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:
第一档
第二档
第三档
每户每月用电量(单位:度)
[0,200]
(200,400]
(400,+∞)
电价(单位:元/度)
0.61
0.66
0.91
例如:某用户11月用电410度,采用合表电价收费标准,应交电费410×0.65=266.5(元),若采用阶梯电价收费标准,应交电费200×0.61+(400-200)×0.66+(410-400)×0.91=263.1(元).
为调查阶梯电价是否能起到“减轻居民负担”的效果,随机调查了该市100户居民的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量(单位:度)为88、268、370、140、440、420、520、320、230、380.
组别
月用电量
频数统计
频数
频率
①
[0,100]
②
(100,200]
③
(200,300]
④
(300,400]
⑤
(400,500]
⑥
(500,600]
合计
(1)完成频率分布表,并绘制频率分布直方图;
(2)根据已有信息,试估计全市住户11月的平均用电量(同一组数据用该区间的中点值作代表);
(3)设某用户11月用电量为x度(x∈N),按照合表电价收费标准应交y1元,按照阶梯电价收费标准应交y2元,请用x表示y1和y2,并求当y2≤y1时,x的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于75%的用户带来实惠?
[解] (1)频率分布表如下:
组别
月用电量
频数统计
频数
频率
①
[0,100]
4
0.04
②
(100,200]
12
0.12
③
(200,300]
24
0.24
④
(300,400]
30
0.30
⑤
(400,500]
26
0.26
⑥
(500,600]
4
0.04
合计
100
1
频率分布直方图如图:
(2)该100户用户11月的平均用电量
=50×0.04+150×0.12+250×0.24+350×0.3+450×0.26+550×0.04=324(度),
所以估计全市住户11月的平均用电量为324度.
(3)y1=0.65x,
y2=
由y2≤y1得或
或
解得x≤≈423.1.
因为x∈N,故x的最大值为423.
根据频率分布直方图,x≤423时的频率为0.04+0.12+0.24+0.3+23×0.002
6=0.759
8>0.75,
故估计“阶梯电价”能给不低于75%的用户带来实惠.
PAGE章末综合测评(四) 统计
(时间:120分钟,满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.对一个容量为N的总体抽取容量为n的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2
B.p2=p3C.p1=p3D.p1=p2=p3
D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为,所以p1=p2=p3,故选D.]
2.某公司从代理的A,B,C,D四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A,B,C,D四种产品的数量比是2∶3∶2∶4,则该样本中D类产品的数量为( )
A.22
B.33
C.40
D.55
C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D类产品的数量为110×=40.]
3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于( )
A.mh
B.
C.
D.m+h
C [在频率分布直方图中小长方形的高等于,所以h=,|a-b|=,故选C.]
4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:
上班时间
18
20
21
26
27
28
30
32
33
35
36
40
下班时间
16
17
19
22
25
27
28
30
30
32
36
37
则上、下班时间行驶时速的中位数分别为( )
A.28与28.5
B.29与28.5
C.28与27.5
D.29与27.5
D [上班时间行驶速度的中位数是=29,
下班时间行驶速度的中位数是=27.5.]
5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me,众数为mo,平均值为,则( )
A.me=mo=
B.me=mo<
C.me<mo<
D.mo<me<
D [由条形图可知,中位数为me=5.5,众数为mo=5,平均值为≈5.97,
所以mo<me<.]
6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为( )
A.4∶3∶1
B.5∶3∶1
C.5∶3∶2
D.3∶2∶1
B [体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,
∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]
7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
A.64
B.54
C.48
D.27
B [前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]
8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )
A.85,85,85
B.87,85,86
C.87,85,85
D.87,85,90
C [∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为(100+95+90×2+85×4+80+75)=87.]
二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)
9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中正确的是( )
A.建设后,种植收入减少
B.建设后,其他收入增加了一倍以上
C.建设后,养殖收入增加了一倍
D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
BCD [设建设前经济收入为a,则建设后经济收入为2a,由题图可知:
种植收入
第三产业收入
养殖收入
其他收入
建设前经济收入
0.6a
0.06a
0.3a
0.04a
建设后经济收入
0.74a
0.56a
0.6a
0.1a
根据上表可知B、C、D结论均正确,结论A不正确,故选BCD.]
10.在某次高中学科竞赛中,4
000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是( )
A.成绩在[70,80)分的考生人数最多
B.不及格的考生人数为1
000
C.考生竞赛成绩的平均分约为70.5分
D.考生竞赛成绩的中位数为75分
ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4
000×0.25=1
000,故B正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×≈71.67,故D错误.故选ABC.]
11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:
班级
参加人数
中位数
方差
平均数
甲
55
149
191
135
乙
55
151
110
135
某同学根据表中数据分析得出的结论正确的是( )
A.甲、乙两班学生成绩的平均数相同
B.甲班的成绩波动比乙班的成绩波动大
C.乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)
D.甲班成绩的众数小于乙班成绩的众数
ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A正确;s=191>110=s,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C正确;由题表看不出两班学生成绩的众数,∴D错误.]
12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( )
A.平均数≤3
B.平均数≤3且标准差s≤2
C.平均数≤3且极差小于或等于2
D.众数等于1且极差小于或等于4
CD [A错,举反例:0,0,0,0,2,6,6,其平均数=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数=3,且标准差s=≤2,不符合指标.C对,若极差等于0或1,在≤3的条件下,显然符合指标;若极差等于2且≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]
三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)
13.下列数据的70%分位数为________.
20,14,26,18,28,30,24,26,33,12,35,22.
28 [把所给的数据按照从小到大的顺序排列可得:
12,14,18,20,22,24,26,26,28,30,33,35,
因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]
14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x
1
2
3
4
5
命中率y
0.4
0.5
0.6
0.6
0.4
小李这5天的平均投篮命中率为________.
0.5 [小李这5天的平均投篮命中率
==0.5.]
15.一个样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,则这个样本的方差是________.
5 [x2-5x+4=0的两根是1,4.当a=1时,a,3,5,7的平均数是4,当a=4时,a,3,5,7的平均数不是1.∴a=1,b=4.则方差s2=×[(1-4)2+(3-4)2+(5-4)2+(7-4)2]=5.]
16.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:
甲:3,4,5,6,8,8,8,10;
乙:3,3,4,7,9,10,11,12.
两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:
甲:________,乙:________.(本题第一空2分,第二空3分)
众数 中位数 [甲、乙两个厂家从不同角度描述了一组数据的特征.对甲分析:该组数据8出现的次数最多,故运用了众数;对乙分析:该组数据最中间的是7与9,故中位数是=8,故运用了中位数.]
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)求下列数据的四分位数.
13,15,12,27,22,24,28,30,31,18,19,20,
[解] 把12个数据按从小到大的顺序排列可得:
12,13,15,18,19,20,22,24,27,28,30,31,
计算12×25%=3,12×50%=6,12×75%=9,
所以数据的第25百分位数为=16.5,第50百分位数为=21,第75百分位数为=27.5.
18.(本小题满分12分)如图所示是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本在[15,18)内的频率;
(2)求样本容量;
(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.
[解] (1)由样本频率分布直方图可知组距为3.
由样本频率分布直方图得样本在[15,18)内的频率等于×3=.
(2)∵样本在[15,18)内频数为8,由(1)可知,样本容量为=8×=50.
(3)∵在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47,又在[15,18)内频数为8,故在[18,33)内的频数为47-8=39.
19.(本小题满分12分)为了更好地进行精准扶贫,在某地区经过分层随机抽样得到本地区贫困人口收入的平均数(单位:万元/户)和标准差,如下表:
劳动能力差
有劳动能力但无技术
有劳动能力但无资金
户数
10
12
8
平均数
1.2
2.0
2.4
标准差
1
4
4
求所抽样本的这30户贫困人口收入的平均数和方差.
[解] 由表可知所抽样本的这30户贫困人口收入的平均数为
×1.2+×2+×2.4=1.84万元,
这30户贫困人口收入的方差为
×[12+(1.2-1.84)2]+×[42+(2-1.84)2]+×[42+(2.4-1.84)2]=11.230
4.
20.(本小题满分12分)某学校对男、女学生进行有关“习惯与礼貌”
的评分,记录如下:
男:54,70,57,46,90,58,63,46,85,73,55,66,38,44,56,75,35,58,94,52;
女:77,55,69,58,76,70,77,89,51,52,63,63,69,83,83,65,100,74.
(1)分别计算和比较男女生得分的平均数和标准差;
(2)分别计算男、女生得分的四分位数.
[解] (1)男生的平均得分为甲=(35+38+44+…+94)≈61.
男生的方差是s=[(35-61)2+(38-61)2+…
+(94-61)2]=256.25,
∴s甲≈16.
女生的平均得分是
乙=(51+52+55+…
+89+100)≈71.
女生的方差是s=[(51-71)2+(52-71)2+…
+(100-71)2]≈162.11,
∴s乙≈13.
(2)男生的数据从小到大的排序为:
35,38,44,46,46,52,54,55,56,57,58,58,63,66,70,73,75,85,90,94.
女生的数据从小到大排序为:
51,52,55,58,63,63,65,69,69,70,74,76,77,77,83,83,89,100.
所以男、女生的四分位数分别为:
25%分位数
50%分位数
75%分位数
男生
49
57.5
71.5
女生
63
69.5
77
21.(本小题满分12分)某电视台为宣传本省,随机对本省内15~65岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”.统计结果如图表所示.
组号
分组
回答正确的人数
回答正确的人数占本组的频率
第1组
[15,25)
a
0.5
第2组
[25,35)
18
x
第3组
[35,45)
b
0.9
第4组
[45,55)
9
0.36
第5组
[55,65]
3
y
(1)分别求出a,b,x,y的值;
(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?
[解] (1)由频率表中第4组数据可知,第4组总人数为=25,
再结合频率分布直方图可知n==100,
∴a=100×0.01×10×0.5=5,
b=100×0.03×10×0.9=27,
x==0.9,y==0.2.
(2)第2,3,4组回答正确的共有54人,
∴利用分层随机抽样在54人中抽取6人,
每组分别抽取的人数为:
第2组:×6=2(人),
第3组:×6=3(人),
第4组:×6=1(人).
22.(本小题满分12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30
min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序
1
2
3
4
5
6
7
8
零件尺寸
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
抽取次序
9
10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得
=i=9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
一天内抽检零件中,如果出现了尺寸在(-3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(1)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(2)在(-3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:≈0.09.
[解] (1)由于=9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(-3s,+3s)以外,因此需对当天的生产过程进行检查.
(2)剔除离群值,即第13个数据,剩下数据的平均数为(16×
9.97-9.22)=10.02,
这条生产线当天生产的零件尺寸的均值的估计值为10.02.
因为方差s2=(-162),
所以=16×0.2122+16×9.972≈1
591.134,
剔除第13个数据,剩下数据的样本方差为
(1
591.134-9.222-15×10.022)≈0.008,
这条生产线当天生产的零件尺寸的标准差的估计值为≈0.09.
PAGE专题强化训练(四) 统计
一、选择题
1.为了调查全国人口的寿命,抽查了十一个省(市)的2
500名城镇居民.这2
500名城镇居民的寿命的全体是( )
A.总体
B.个体
C.样本
D.样本容量
C [被抽查的个体是样本]
2.已知总体容量为106,若用随机数法抽取一个容量为10的样本.下面对总体的编号最方便的是( )
A.1,2,…,106
B.0,1,2,…,105
C.00,01,…,105
D.000,001,…,105
D [由随机数法抽取原则可知选D.]
3.某农科所种植的甲、乙两种水稻,连续六年在面积相等的两块稻田中作对比试验,试验得出平均产量是甲=乙=415
kg,方差是s=794,s=958,那么这两种水稻中产量比较稳定的是( )
A.甲
B.乙
C.甲、乙一样稳定
D.无法确定
A [∵s4.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12]内的频数为( )
A.18
B.36
C.54
D.72
B [易得样本数据在区间[10,12]内的频率为0.18,则样本数据在区间[10,12]内的频数为36.]
5.从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:
分组
[90,100)
[100,110)
[110,120)
[120,130)
[130,140)
[140,150)
频数
1
2
3
10
3
1
则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( )
A.30%
B.70%
C.60%
D.50%
B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的×100%=70%.]
二、填空题
6.下列一组数据的70%分位数是________.
78,
73,
76,
77,
68,
69,
76,
80,
82,
77.
77.5 [把数据按照从小到大的顺序排列可得
68,69,73,76,76,77,77,78,80,82,因为10×70%=7是整数,所以数据的70%分位数是=77.5]
7.某学习小组有男生56人,女生42人,一次测试后,用分层随机抽样的方法从该学习小组全体学生的测试成绩中抽取一个容量为28的样本,样本中男生的平均成绩为84分,女生样本的平均成绩为98分,则所抽取的这28人的平均成绩为________分.
90 [由题意可知样本中男生的人数为56×=16,女生的人数为42×=12,所以所抽取的这28人的平均成绩为×84+×98=90分.]
8.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5
℃的城市个数为11,则样本中平均气温不低于25.5
℃的城市个数为________.
9 [设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.]
三、解答题
9.某市化工厂三个车间共有工人1
000名,各车间男、女工人数如下表:
第一车间
第二车间
第三车间
女工
173
100
y
男工
177
x
z
已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.
(1)求x的值;
(2)现用分层随机抽样的方法在全厂抽取50名工人,则应在第三车间抽取多少名工人?
[解] (1)依题意有=0.15,解得x=150.
(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,
∴第三车间的工人数是1
000-350-250=400.
设应从第三车间抽取m名工人,则有=,解得m=20,∴应在第三车间抽取20名工人.
10.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下表是该学生7次考试的成绩.
数学
88
83
117
92
108
100
112
物理
94
91
108
96
104
101
106
(1)求数学成绩的中位数.
(2)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
[解] (1)把数学成绩按照从小到大的顺序排列可得:
83,88,92,100,108,112,117,所以数学成绩的中位数是100.
(2)=100+=100,
=100+=100,
∴s=[(88-100)2+(83-100)2+(117-100)2+(92-100)2+(108-100)2+(100-100)2+(112-100)2]=142,s=[(94-100)2+(91-100)2+(108-100)2+(96-100)2+(104-100)2+(101-100)2+(106-100)2]=,从而s>s,∴物理成绩更稳定.
11.一组数据中的每一个数据都乘2,再减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )
A.40.6,1.1
B.48.8,4.4
C.81.2,44.4
D.78.8,75.6
A [设原来数据的平均数和方差分别为和s2,则得]
12.已知一组正数x1,x2,x3的方差s2=(x+x+x-12),则数据x1+1,x2+1,x3+1的平均数为( )
A.2
B.3
C.4
D.5
B [由方差的计算公式可得s2=[(x1-)2+(x2-)2+…+(xn-)2]
=[x+x+…+x-2(x1+x2+…+xn)+n2]
=(x+x+…+x-2n2+n2)
=(x+x+…+x)-2,
∴由题意x1,x2,x3的方差s2=(x+x+x-12),知2=4,
又x1,x2,x3均为正数,故=2.
所以数据x1+1,x2+1,x3+1的平均数是2+1=3.]
13.(一题两空)从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.
0.030 3 [∵0.005×10+0.035×10+a×10+0.020×10+0.010×10=1,∴a=0.030.
设身高在[120,130),[130,140),[140,150]三组的学生分别有x,y,z人,则=0.030×10,解得x=30.同理,y=20,z=10.故从[140,150]的学生中选取的人数为×18=3.]
14.统计局就某地居民的月收入(单位:元)情况调查了10
000人,并根据所得数据画出了样本频率分布直方图(如图),每个分组包括左端点,不包括右端点,如第一组表示月收入在[2
500,3
000)内.
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10
000人中用分层随机抽样的方法抽出100人作进一步分析,则月收入在[4
000,4
500)内的应抽取多少人?
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.
[解] (1)因为(0.000
2+0.000
4+0.000
3+0.000
1)×500=0.5,所以a==0.000
5.又0.000
5×500=0.25,所以月收入在[4
000,4
500)内的频率为0.25,所以100人中月收入在[4
000,4
500)内的人数为0.25×100=25.
(2)因为0.000
2×500=0.1,0.000
4×500=0.2,0.000
5×500=0.25,0.1+0.2=0.3<0.5,0.1+0.2+0.25=0.55>0.5,所以中位数在区间[3
500,4
000)内,
所以样本数据的中位数是
3
500+=3
900(元).
(3)样本平均数为(2
750×0.000
2+3
250×0.000
4+3
750×0.000
5+4
250×0.000
5+4
750×0.000
3+5
250×0.000
1)×500=3
900(元).
15.某工厂有工人1
000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层随机抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(1)A类工人中和B类工人中各抽查多少工人?
(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如表1和表2.
表1
生产能力分组
[100,110)
[110,120)
[120,130)
[130,140)
[140,150]
人数
4
8
x
5
3
表2
生产能力分组
[110,120)
[120,130)
[130,140)
[140,150]
人数
6
y
36
18
①
先确定x,y,再补全频率分布直方图(如图).就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
②
分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).
A类工人生产能力的频率分布直方图
B类工人生产能力的频率分布直方图
[解] (1)A类工人中和B类工人中分别抽查25名和75名.
(2)①由4+8+x+5+3=25,得x=5.
由6+y+36+18=75,得y=15.
频率分布直方图如图:
A类工人生产能力的频率分布直方图
B类工人生产能力的频率分布直方图
从图可以判断:B类工人中个体间的差异程度更小.
②A=×105+×115+×125+×135+×145=123,
B=×115+×125+×135+×145=133.8,
=×123+×133.8=131.1.
A类工人生产能力的平均数,B类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.
PAGE