相反数
学习目标:1.知识与技能
①借助数轴了解相反数的概念,知道互为相反数的位置关系.
②给一个数,能求出它的相反数.
2.过程与方法
①训练学生利用数轴应用数形结合的方法解决问题.
②培养学生自己归纳总结规律的能力.
3.情感、态度与价值观
①通过相反数的学习,渗透数形结合的思想.
②感受事物之间对立、统一联系的辩证思想.
重 点:理解相反数的意义.
难 点:理解和掌握双重符号简化的规律.
教学过程
一.板书课题,揭示目标
同学们,本节课我们一同学习“1.2.3 相反数”本节课的学习目标是(投影).
学习目标
①借助数轴了解相反数的概念,知道互为相反数的位置关系.
②给一个数,能求出它的相反数.
二.指导自学
自学指导
请认真看P.10—11的内容.思考P10页思考题中的问题,
5分钟后,比比谁的答案正确
三.学生自学
1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效.
2.检查自学效果
(1)投影练习
例1 填空
(1)-5.8是 5.8 的相反数, 3 的相反数是-(+3),a的相反数是 –a ,a-b的相反数是 -(a-b) ,0的相反数是 0 .
(2)正数的相反数是 负数 ,负数的相反数是 正数 , 0 的相反数是它本身.
例2 下列判断不正确的有 (C)
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.
A.1个 B.2个 C.3个 D.4个
例3 化简下列各符号:
(1)-[-(-2)] (2)+{-[-(+5)]}
(3)-{-{-…-(-6)}…}(共n个负号)
【答案】 (1)-2 (2)5 (3)当n为偶数时,为6;当n为奇数时,为-6.
【提示】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.
例4 数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,点B和点C各对应什么数?
【答案】 C点表示2或6,则相应的B点应表示-2或-6.
【提示】 画出数轴,结合数轴的特点来分析.
【点评】 经历观察数学活动,发展自己的指导能力.
备选例题
(2004·江西)如图所示,数轴上的点A所表示的是实数a,则点A到原点的距离是___________.
【点拨】 由数轴上的位置,不难知道a是一个负数,这是解决本题的前提.
【答案】 -a
四.讨论更正,合作探究
1.学生自由更正,或写出不同解法;
2.评讲
想一想 (1)上述各对数之间有什么特点?
(2)表示这两对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的数吗?
观察 像这样只有符号不同的两个数叫相反数.
两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.
【总结】 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.
归纳 ①相反数的概念及表示方法.
②相反数的代数意义和几何意义.
③符号的化简.
1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?
(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.
【答案】 (1)不正确,如0的相反数还是0,负数的相反数是正数.
(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4.
2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?
【提示】 结合数轴进行观察比较.
解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.
∴-a在1和-3之间
故-3≤a≤1
∴a的相反数是不小于-3又不大于1的数.
【点评】 在解决问题中,能进行简单的、有条理的思考.
五.课堂作业。
1.判断题
(1)-3是相反数 (×)
(2)-7和7是相反数 (∨)
(3)-a的相反数是a,它们互为相反数 (∨)
(4)符号不同的两个数互为相反数 (×)
2.分别写出下列各数的相反数,并把它们在数轴上表示出来.
1,-2,0,4.5,-2.5,3
【答案】 相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略.
3.若一个数的相反数不是正数,则这个数一定是(B)
A.正数 B.正数或0 C.负数 D.负数或0
4.一个数比它的相反数小,这个数是(B)
A.正数 B.负数 C.非负数 D.非正数
5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是±.
6.比-6的相反数大7的数是 13 .
提升能力
7.若a与a-2互为相反数,则a的相反数是 –1 .
8.(1)-(-8)的相反数是 –8 ,
(2)+(-6)是 6 的相反数.
(3) 1-a 的相反数是a-1.
(4)若-x=9,则x= -9 .
9.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示,并将这6个数用“<”连接起来.
【答案】 -3<-n 开放探究(选作)
10.如图是一个正方体纸盒的展开图,请把-11,12,11,-2,-12,2分别填入六个正方形,使得按虚线折成的正方体后,对面上的两个数互为相反数.
11.试讨论-a的正负.
【答案】 当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0.