《平行四边形的面积》教学设计
教学内容:
《义务教育教科书·数学》(青岛版)六年制五年级上册第五单元信息窗1。
教学目标:
掌握平行四边形的面积计算公式,能应用平行四边形的面积公式解决相应的实际问题。
经历探索平行四边形面积计算公式的过程,培养观察、比较、推理和概括能力,渗透转化的数学思想。
培养学生的合作意识和严谨的科学态度,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重点:掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
教学难点:理解平行四边形的面积计算公式的推导过程。
课前准备:1.学具:以小组为单位给学生准备1号和2号两个学具袋。
2.教具:课件、磁铁、平面图形纸片。
教学过程:
一.
情境导入
教师出示情境图。
问:从图中你知道了哪些数学信息?
信息:1.玻璃是平行四边形的。
2.玻璃的底是1.2米,高是0.7米。
问:你能根据这些数学信息,提出什么有价值的数学问题?
问题:玻璃的面积是多少平方米?
师:要求玻璃的面积,也就是求这个平行四边形的面积。
(板书课题:平行四边形的面积)
二.
合作探索
师:为了方便大家研究,我们先以这个底为7厘米,高4厘米,邻边为5厘米的平行四边形为例进行探究。
回忆一下,我们已经学过了哪些图形的面积?
长方形的面积=长×宽。
正方形的面积=边长×边长。
大胆猜测:平行四边形的面积怎么算?
预设:1.底乘高。7×4=28(平方厘米)(板书)
2.底乘邻边。7×5=35(平方厘米)(板书)
谈话:这仅仅是我们的猜测,可以怎样来验证呢?
探究活动一:
1.引导学生回顾长方形面积的探究方法,使学生发现可以用数格子的方法初步求平行四边形的面积。
2.拿出1号学具袋。小组合作,用数格子的方法初步探究平行四边形的面积。
教师巡视指导,找典型。
学生用投影展示自己的数法,说出探究结果。
3.引导学生发现数格子得到的结果与刚才的猜测底乘高:7×4=28(平方厘米)的结果一致。
探究活动二:
1.指出矛盾点,让学生知道探究出计算公式的必要性。
肯定数格子的方法对探究一些小图形比较有效,但是如果我们要研究一块平行四边形菜地或一个平行四边形鱼塘的面积还能数格子吗?(不能,学生谈想法)。
引导学生发现数格子得到的面积28平方厘米正好和底乘高的结果一样,那底乘高是否正确呢?我们怎么进一步证明我们的猜想呢?
2.学生小组合作,用剪——拼法(割补法)探究平行四边形的面积。
拿出学具袋2,以小组为单位,先互相谈论剪拼的方法,再剪一剪,拼一拼。
课件出示温馨提示:
(1)做一做:
想办法把平行四边形转化成学过的图形。
(2)找一找:转化成的图形和原来的平行四边形有什么关系?
(小组合作,通过剪、拼的方法来探究,教师巡视指导)
找两组典型代表上台用投影展示剪拼的过程,说一说转化成了什么图形,转化成的图形与原平行四边形有什么关系。
学生可能会有学生可能会有以下想法:
第1种方法:沿着一条高剪下一个三角形,再把三角形平移到另一边,拼成长方形。我们小组发现,平行四边形的面积和长方形的面积相等。
第2种方法:沿着一条高,剪成两个梯形,再拼成一个长方形,我们小组发现:平行四边形的面积不变,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。
问:刚才同学们都是沿什么剪得?(高)
为什么要沿高剪?
沿高剪下,什么没变?(面积,引导学生说一说原因)
3.引导学生无论哪一种剪法,都拼成了长方形。拼成的长方形与原来平行四边形的面积相等。长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
我们用S表示面积,a表示底,h表示高,所以平行四边形的面积用字母表示为S=ah。(板书)
板书:
长方形的面积
=
长×宽
平行四边形的面积
=
底×高
S
=
ah
问:从这里我们可以看出,要计算平行四边形的面积,必须知道哪些信息?怎样计算?
师:我们不仅探究出了平行四边形的面积公式,还学会了一种非常重要的数学思想,那就是把新知识转化为已学的旧知识来研究,这种方法叫——转化法。
4.学以致用,解决问题:玻璃的面积是多少平方米?
1.2
×
0.7
=
0.84
(平方米)
答:玻璃的面积是0.84平方米。
5.回顾平行四边形面积计算公式推导过程,猜想——验证——结论——应用。
三.自主练习
出示自主练习1.2.3题。
1.计算下面平行四边形的面积。
2.利用提供的数据,能算出哪几个平行四边形的面积?算一算。
借助这个题给学生夯实:公式“平行四边形的面积=底×高”中的高必须是底对应的高。
师:平行四边形的面积公式在日常生活中还有很广泛的应用呢!请看下一题。
3.平行四边形的停车位底是2.5米,高是5米,它的面积是多少?
四.归纳总结
师:不知不觉间,这节课快要接近尾声了,同学们都有哪些收获?
(生谈收获)
师:看来同学们的收获可真不少!
我们的数学来源于生活,又服务于生活,平行四边形的面积公式在生活中还有很广泛的应用。老师希望你们在今后的学习中能够用数学的眼光去发现问题,用数学的思维去思考问题,用数学的方法去解决问题。
板书设计:
平行四边形的面积
底乘高:7×4=28(cm2)
猜想
底乘邻边:7×5=35(cm2)
验证
长方形的面积
=
长×宽
结论
平行四边形的面积
=
底×高
S
=
ah
应用